基于Ju和Chen提出的颗粒增强复合材料的一般细观力学方法,采用Qu给出的一阶近似修正的Eshelby张量,本文建立了考虑夹杂之间相互影响的含任意分布弱界面颗粒增强多相复合材料等效模量预测的一般细观力学方法,通过体积均匀化方法得到了一组细观力学本构方程.分别推导了忽略夹杂之间相互影响的弱界面多相复合材料宏观模量表达式以及考虑夹杂之间相互影响的弱界面两相复合材料的宏观模量表达式.此外,还给出了几种特殊复合材料体系在考虑界面弱化下的宏观等效性能参数的解析表达式,在界面粘结完好的假设下,给出的表达式均可以退化成经典的细观力学预测结果.在考虑夹杂之间相互影响的情况下,本文预测结果与实验数据吻合很好,验证了模型的有效性.
参考文献
[1] | G.Z.Voyiadjis;D.H.Allen.Damage and interfacial debonding in composites[A].Amsterdam:Elsevier Science,1996:44. |
[2] | P.J.Rae;H.T.Goldrein;S.J.P.Palmer;J.E.Field,A.L.Lewis .Quasi-static studies of the deformation and failure of β-HMX based polymer bonded explosives[J].Proceedings of the Royal Society of London,2002,A 458:743-762. |
[3] | Rae PJ.;Palmer SJP.;Goldrein HT.;Field JE.;Lewis AL. .Quasi-static studies of the deformation and failure of PBX 9501[J].Proceedings of the Royal Society. Mathematical, physical and engineering sciences,2002(2025):2227-2242. |
[4] | Zhou CW;Yang W;Fang DN .Mesofracture of metal matrix composites reinforced by particles of large volume fraction[J].Theoretical and Applied Fracture Mechanics,2004(1/3):311-326. |
[5] | Tan H;Huang Y;Liu C;Geubelle PH .The Mori-Tanaka method for composite materials with nonlinear interface debonding[J].International Journal of Plasticity,2005(10):1890-1918. |
[6] | Xin Jin;Linzhi Wu;Yuguo Sun;Licheng Guo .Microstructure and mechanical properties of ZrO2/NiCr functionally graded materials[J].Materials Science and Engineering A,2009,509:63-68. |
[7] | B.Banerjee;D.O.Adams.Micromechanics-based prediction of thermoelastic properties of high energy materials[A].New York,USA:Columbia University,2002 |
[8] | J.C.Smith .Correction and extension of Van der Poel's method for calculating the sheas modulus of a particulate composite[J].Journal of Research of the National Bureau of Standards Section A:Physics and Chemistry,1974,78:355-361. |
[9] | J.C.Smith .Simplification of Van der Poel' s formula for the shear modulus of a particulate composite[J].Journal of Research of the National Bureau of Standards Section A:Physics and Chemistry,1975,79A:419-423. |
[10] | L.J.Walpole .A coated inclusion in an elastic medium[J].Mathematical Proceedings of the Cambridge Philosphical Society,1978,83:495-506. |
[11] | R.M.Christensen;K.H.Lo .Solutions for effective shear properties in three phase sphere and cylinder models[J].Journal of the Mechanics and Physics of Solids,1979,27:315-330. |
[12] | Y Benveniste .The effective mechanical behavior of composite materials with imperfect contact between the constituents[J].Mechanics of Materials,1985,4:197-208. |
[13] | I.Jasiuk;Y.Tong.The effect of interface on the elastic stiffness of composites[A].,1989:49. |
[14] | J.D.Achenbach;H.Zhu .Effect of interfacial zone on mechanical behavior and failure of fiber-reinforced composites[J].Journal of the Mechanics and Physics of Solids,1989,37:381-393. |
[15] | J.D.Achenbach;H.Zhu .Effect of interphases on micro and macromechanical behavior of hexagonal-array fiber composites[J].Journal of Applied Mechanics,Transactions of the ASME,1990,57:956-963. |
[16] | N.J.Pagano;G.P.Tandon .Modeling of imperfect bonding in fiber reinforced brittle matrix composites[J].Mechanics of Materials,1990,9:49-64. |
[17] | Z Hashin .The spherical inclusion with imperfect interface[J].Journal of Applied Mechanics,Transactions of the ASME,1991,58:444-449. |
[18] | Z Hashin .Thermoelastic properties of particulate composites with imperfect interface[J].Journal of the Mechanics and Physics of Solids,1991,39:745-762. |
[19] | 陈浩然;杨庆生 .界面部分脱粘的多相介质的有效性能[J].理论与应用力学学报,1991,4:53-59. |
[20] | Jianmin Qu .The effect of slightly weakened interfaces on the overall elastic properties of composite materials[J].Mechanics of Materials,1993,14:269-281. |
[21] | 陈浩然,苏晓风,郑长良.考虑损伤界面的多相复合材料总体平均力学性能的预测[J].计算结构力学及其应用,1995(01):39-46. |
[22] | Z.Zhong;S A.Meguid .On the elastic field of a spherical inhomogeneity with an imperfectly bonded interface[J].Journal of Elasticity,1997,46:91-113. |
[23] | Z.Hashin .Thin interphase/imperfect interface in elasticity with application to coated fiber composutes[J].Journal of the Mechanics and Physics of Solids,2002,50:2509-2537. |
[24] | 廉英琦 .弱界面粘结的纤维增强金属基复合材料细观力学分析[D].南京航空航天大学,2004. |
[25] | 孙志刚,宋迎东,廉英琦.弱界面粘结对复合材料有效性能的影响[J].航空动力学报,2005(06):915-919. |
[26] | Shihua Nie;Cemal Basaran .A micromechanical model for effective elastic properties of particulate composites with imperfect interracial bonds[J].International Journal of Solids and Structures,2005,42:4179-4191. |
[27] | J.W.Ju;T.M.Chen .Micromechanics and effective moduli of elastic composites containing randomly dispersed ellipsoidal inhomogeneities[J].Acta Mechanica,1994,103:103-121. |
[28] | J.W.Ju;T.M.Chen .Effective elastic moduli of two-phase composites containing randomly dispersed spherical inhomogeneities[J].Acta Mechanica,1994,103:123-144. |
[29] | Jianmin Qu .Eshelby tensor for an elastic inclusion with slightly weakened interface[J].Journal of Applied Mechanics,Transactions of the ASME,1993,60:1048-1050. |
[30] | G.P.Tandon;G.J.Weng .Average stress in the matrix and effective moduli of randomly oriented composites[J].Composites Science and Technology,1986,27:111-132. |
[31] | Lee HK;Pyo SH .Micromechanics-based elastic damage modeling of particulate composites with weakened interfaces[J].International Journal of Solids and Structures,2007(25/26):8390-8406. |
[32] | H.K.Lee;S.H.Pyo .Multi-level modeling of effective elastic behavior and progressive weakened interface in particulate composites[J].Composites Science and Technology,2008,68:387-397. |
[33] | J.R.Willis .Bounds and self-consistent estimates for the overall properties of anisotropic composites[J].Journal of the Mechanics and Physics of Solids,1977,25:185-202. |
[34] | G.J.Weng .The theoretical connection between Mori-Tanaka's theory and the Hashin-Shtrikman-Walpole bounds[J].International Journal of Engineering Science,1990,28:1111-1120. |
[35] | Z. Zhong;S. A. Meguid .On the eigenstrain problem of a spherical inclusion with an imperfectly bonded interface[J].Journal of Applied Mechanics,1996(4):877-883. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%