欢迎登录材料期刊网

材料期刊网

高级检索

对某电厂超超临界机组运行达到16000 h的新型铁素体耐热钢P92取样管段进行拉伸、冲击性能、断口特征、显微组织、扫描电镜、能谱、碳化物转移、X射线衍射、透射电镜等分析。研究结果表明,P92运行16000 h后室温抗拉强度和规定非比例延伸强度分别达703 MPa和543 MPa,依然保持在较高水平,满足ASME SA335 P92性能要求;高温(600℃)的规定非比例延伸强度值满足GB5310对10Cr9MoW2VNbBN的技术要求;冲击吸收能量在160 J以上,冲击韧性未明显降低;冲击试样的断口显示出韧性断口的宏观特征,纤维区分布着大小相对均匀的等轴韧窝,并且韧窝中存在析出相粒子;析出相主要为M23C6型碳化物,在晶界不断的集聚长大,其次为弥散分布的颗粒状MX相,即Nb,V(C,N),还含有Fe2W型Laves相,尺寸细小且相对稳定。

Performance and microstructure of a new ferritic heat-resistant steel P92 used in ultra-supercritical unit of Plant for 16000 h was studied by means of tensile and impact tests, scanning electron microscopy (SEM) and EDS analysis, X-ray diffraction (XRD) and transmission electron microscopy(TEM). The results show that the room temperature tensile strength and proof strength at non-proportional extension of the running steel P92 for 16000 h reach 703 MPa and 543 MPa, respectively, which remain at a high level and meet the performance requirement of ASME SA335 P92. The proof strength of the steel at high temperature (600℃ ) still meets the technical requirement of GB5310 for 10CrgMoW2VNbBN. The steel exhibits high impact absorption energy values over 160 J, its impact toughness is not significantly reduced after long-term service. The impact fracture reveals ductile fracture characteristics. Relatively uniform equiaxed dimples, in which precipitation particles are observed, are distributed in fibrous region. Precipitates are mainly M23 C6 carbides along grain boundaries, and dispersively distributed MX phase, Nb, V (C, N) carbides and relatively stable Laves phase(Fe2W) are also observed.

参考文献

[1] 唐飞,董斌,赵敏.超超临界机组在我国的发展及应用[J].电力建设,2010(01):80-82.
[2] 张斌,胡正飞.9Cr马氏体耐热钢发展及其蠕变寿命预测[J].钢铁研究学报,2010(01):26-31.
[3] 丛相州,徐广信,魏骁,安锦平,彭先宽,惠娜.超超临界机组P92钢管件的国产化研究[J].中国电力,2007(07):17-20.
[4] 林富生.超超临界参数机组材料国产化对策[J].动力工程,2004(03):311-316,339.
[5] 姜运建,张文建,李文彬.Laves相和Z相对P92钢蠕变的影响[J].热力发电,2009(08):55-58.
[6] 王学,潘乾刚,陈方玉,陶永顺,彭芳芳.P92钢高温蠕变损伤分析[J].材料热处理学报,2010(02):65-69.
[7] 戚正风.固态金属中的扩散与相变[M].北京:机械工业出版社,1998:196-201.
[8] Sawada K;Tabuchi M;Hongo H et al.Z-phase formation in welded joints of high chromium ferritic steels af ter long-term creep[J].Mater Gharact,2007,59(09):1161-1167.
[9] G. Dimmler;P. Weinert;E. Kozeschnik .Quantification of the Laves phase in advanced 9-12 percent Cr steels using a standard SEM[J].Materials Characterization,2003(5):341-352.
[10] Sawada K;Kubo K;Abe F .Creep behavior and stability of MX precipitates at high temperature in 9Cr2015 Mo2118W2VNb steel[J].Materials Science and Engineering A,2001,319-321:784-787.
[11] Jae Seung Lee;Hassan Ghassemi Armaki;Kouichi Maruyama .Causes of breakdown of creep strength in 9Cr-1.8W-0.5Mo-VNb steel[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2006(1/2):270-275.
[12] Sawada K;Takeda M;Maruyama K et al.Effect of W on recovery of lath structure during creep of high chromium martensitie steels[J].Materials Science and Engineering,1999,267(01):19-25.
[13] Ennis P J;Zielinska Lipiee A;Wachter O et al.Microstruetural stability and creep rupture strength of the martensitic steel P92 for advanced power plant[J].Acta Materialia,1997,45(12):4905.
[14] 吴非文.火力发电厂高温金属运行[M].北京:水利电力出版社,1979:131-137.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%