欢迎登录材料期刊网

材料期刊网

高级检索

防弹材料的研发和生产体现了国家的军事实力,是维护国民安全的重要保证.现代防弹材料的发展日新月异,已逐渐从单纯的防御性能向功能性、灵活性和经济性并存方向发展.从各类防弹材料的特点、防弹材料性能的测试研究进展和防弹性能的改善途径3个方面出发,综述了现代防弹材料的国内外研究进展,指出了其中存在的问题或不足,并预测了今后防弹材料的发展趋势.

参考文献

[1] 韩辉,李军,焦丽娟,李楠.陶瓷-金属复合材料在防弹领域的应用研究[J].材料导报,2007(02):34-37.
[2] 仲伟虹;张佐光 等.新型防弹材料-超高分子量聚乙烯纤维[J].兵器材料科学与工程,1995,18(05):60.
[3] 虢忠仁,杜文泽,王树伦,金子明,钟蔚华.芳纶纤维抗弹复合材料研究进展[J].工程塑料应用,2009(01):75-78.
[4] 郑震,杨年慈,施楣梧,黄可龙.硬质防弹纤维复合材料的研究进展[J].材料科学与工程学报,2005(06):905-909,914.
[5] Grujicic M;Bell W C et al.Design and material selection guidelines and strategies for transparent armor systems[J].Materials & Design,2012,34:808.
[6] G. J. Appleby-Thomas;P. J. Hazell;C. Stennett;G. Cooper;K. Helaar;A. M. Diederen .Shock propagation in a cemented tungsten carbide[J].Journal of Applied Physics,2009(6):064916-1-064916-9-0.
[7] Richardon M O W;Wisheart M J .Review of low-velocity impact propertites of composite materials[J].Composites Part A:Applied Science and Manufacturing,1996,27(12):1123.
[8] 马鸣图,黎明,黄镇如.金属防弹材料的研究进展[J].材料导报,2005(z2):423-424,420.
[9] He X D;Kong X H;et a1.Dynamic response of metal honeycomb sandwich structure under high speed impact[A].新加坡,2010
[10] 孙志杰,吴燕,张佐光,仲伟虹,沈建明.防弹陶瓷的研究现状与发展趋势[J].宇航材料工艺,2000(05):10-14,23.
[11] 程卫桃.碳化硼防弹陶瓷工程应用分析[J].中国陶瓷,2005(03):31-32.
[12] Lin CC;Lin JH;Chang CC .Fabrication of compound nonwoven materials for soft body armor.[J].Journal of forensic sciences,2011(5):1150-1155.
[13] 李华,冯圣玉,金子明.玻璃纤维增强乙烯基酯树脂抗冲击复合材料的研究[J].工程塑料应用,2006(04):17-20.
[14] 郑威,袁秀梅,王小兵,孔令美.新型低成本玻璃纤维增强抗冲击复合材料研究[J].中国材料进展,2009(06):33-39.
[15] Chen, W.;Tao, Z.;Fan, L.;Yang, S.;Jiang, W.;Wang, J.;Xiong, Y. .Effect of poly(etherimide) chemical structures on the properties of epoxy/poly(etherimide) blends and their carbon fiber-reinforced composites[J].Journal of Applied Polymer Science,2011(6):3162-3169.
[16] 田继斌,梁胜彪,隋刚,杨小平.羧基化多壁碳纳米管对T-1000碳纤维/环氧树脂复合材料性能的影响[J].玻璃钢/复合材料,2010(01):36-39,45.
[17] Kim, H.;Nam, I. .Stab resisting behavior of polymeric resin reinforced p-aramid fabrics[J].Journal of Applied Polymer Science,2012(5):2733-2742.
[18] Kitagawa T.;Yabuki K.;Murase H. .Morphological study on poly-p-phenylenebenzobisoxazole (PBO) fiber[J].Journal of Polymer Science, Part B. Polymer Physics,1998(1):39-48.
[19] Fritz Larsson;Lars Svensson .Carbon, polyethylene and PBO hybrid fibre composites for structural lightweight armour[J].Composites, Part A. Applied science and manufacturing,2002(2):221-231.
[20] 侯海量,朱锡,刘志军,谷美邦,梅志远.船用轻型陶瓷复合装甲抗弹性能实验研究[J].兵器材料科学与工程,2007(03):5-10.
[21] Grujicic, M;Arakere, G;He, T;Bell, WC;Cheeseman, BA;Yen, CF;Scott, B .A ballistic material model for cross-plied unidirectional ultra-high molecular-weight polyethylene fiber-reinforced armor-grade composites[J].Materials Science and Engineering. A, Structural Materials: Properties, Microstructure and Processing,2008(1/2):231-241.
[22] 徐颖,郗英欣,卢凤纪.高抗冲击复合材料的研究[J].西安交通大学学报,1999(10):108.
[23] 骆志高,陈保磊,庞朝利.金属塑料复合材料的减振性能模态试验分析研究[J].噪声与振动控制,2010(02):138-141.
[24] Srinivasan Arjun Tekalur;Arun Shukla;Kunigal Shivakumar .Blast resistance of polyurea based layered composite materials[J].Composite structures,2008(3):271-281.
[25] 李爽,王天运,夏建伟,郑力.3种多层复合防护板抗破片侵彻试验研究[J].兵器材料科学与工程,2010(01):95-97.
[26] Abrate S .Impact on laminated composites materials[J].Applied Mechanics Reviews,1991,44(04):155.
[27] Backman M;Goldsmith W .The mechanics of penetration of projectiles into targets[J].International Journal of Engineering Science,1978,16(01):1.
[28] Hetherington J G;Rajagopalan B P .An investigation into the energy absorbed during bllistic perforation of composite armors[J].International Journal of Impact Engineering,1991,11(01):33.
[29] 杨超,赵宝荣,田时雨,付克勤.影响测量侵彻过程减加速度因素的探索[J].兵器材料科学与工程,2002(04):3-6.
[30] V.B.C. Tan;K.J.L. Khoo .Perforation of flexible laminates by projectiles of different geometry[J].International journal of impact engineering,2005(7):793-810.
[31] 沈真,杨胜春,陈普会.复合材料层压板抗冲击行为及表征方法的实验研究[J].复合材料学报,2008(05):125-133.
[32] 贾光辉;孙学清 等.极限穿透速度与靶板材料动态屈服强度[J].弹道学报,1998,10(04):46.
[33] 曹兵;高森烈 .非金属材料抗弹性能测试方法的发展概况[J].弹道学报,1995,7(03):87.
[34] 高润芳,韩峰,马晓青,王鹏.几种钨合金破片垂直侵彻装甲钢板极限穿透速度研究[J].弹箭与制导学报,2005(04):57-59,62.
[35] 李茂辉,黄献聪,王雷,周宏.防弹材料及装备V50测试方法研究[J].兵器材料科学与工程,2011(06):99-101.
[36] 孙宇新,李永池,于少娟,胡秀章.长杆弹侵彻受约束A95陶瓷靶的实验研究[J].弹道学报,2005(02):38-41,48.
[37] 黄良钊,张巨先.弹丸对陶瓷靶侵彻试验中的约束效应研究[J].兵器材料科学与工程,1999(04):13-17.
[38] 胡丽萍,王智慧,满红,王和平,郭领.孔结构间隙复合装甲位置效应研究[J].兵器材料科学与工程,2010(01):89-90.
[39] Kuo C F;Yen C K .A progressive damage model for laminated composites containing stress concentrations[J].Journal of Composite Materials,1987,21(09):834.
[40] J.P.Hou;N.Petrinic;C.Ruiz;S.R.Hallett .Prediction of Impact Damage in Composite Plates[J].Composites science and technology,2000(2):273-281.
[41] P. P. Camanho;F. L. Matthews .A progressive damage model for mechanically fastened joints in composite laminates[J].Journal of Composite Materials,1999(24):2248-2280.
[42] Waldemar Andrzej Trzcinski;Radoslaw Trebinski;Stanislaw Cudzilo .Study of the Reaction of Model Reactive Armour to Jet Attack[J].Propellants, Explosives, Pyrotechnics,2003(2):89-93.
[43] K. Krishnan;S. Sockalingam;S. Bansal;S.D. Rajan .Numerical simulation of ceramic composite armor subjected to ballistic impact[J].Composites, Part B. Engineering,2010(8):583-593.
[44] Simon Chan;Zouheir Fawaz;Kamran Behdinan;Ramin Amid .Ballistic limit prediction using a numerical model with progressive damage capability[J].Composite structures,2007(4):466-474.
[45] Wambua P;Vangrimde B et al.The response of natural fiber composites to ballistic impact by fragment simulating projectiles[J].Computers & Structures,2007,77(02):232.
[46] 常敬臻,刘占芳,李建鹏,马鸣图.B900FD-1型防弹钢板抗侵彻能力数值模拟[J].重庆大学学报(自然科学版),2006(10):82-85,95.
[47] 刘占芳,李建鹏,常敬臻.计及弹型对防弹钢板抗侵彻能力的数值模拟[J].重庆大学学报(自然科学版),2008(07):800-803,830.
[48] 杜忠华,赵国志,王晓鸣,欧阳春.复合材料层合板抗弹性的工程分析模型[J].兵器材料科学与工程,2002(01):8-10,60.
[49] 熊杰,萧庆亮.铺层混杂对复合材料层压板侵彻性能的影响[J].材料科学与工程学报,2003(02):178-182.
[50] Lin J H .Novel compound cushion layer for reinforcement of ballistic resistance[J].Textile Research Journal,2005,75(05):431.
[51] 郭宝华,陈静,周宁,华智山,谢续明.高性能木纤维增强聚丙烯复合材料的制备[J].工程塑料应用,2002(07):13-15.
[52] X. Chen;H. Wang .Modelling and computer-aided design of 3D hollow woven reinforcement for composites[J].The Journal of the Textile Institute, Part 3. Technologies for a New Century,2006(1):79-87.
[53] W. Hufenbach;R. Bohm;M. Thieme;A. Winkler;E. Mader;J. Rausch;M. Schade .Polypropylene/glass fibre 3D-textile reinforced composites for automotive applications[J].Materials & design,2011(3):1468-1476.
[54] 袁克俭;金莲 等.芳纶复合材料抗弹性能研究[J].工程塑料应用,1995,23(03):40.
[55] 黄时建.高性能纤维复合材料的防弹性能探讨[J].上海纺织科技,2010(08):7-8,22.
[56] 郑华勇,吴林志,马力,王新筑.Kagome点阵夹芯板的抗冲击性能研究[J].工程力学,2007(08):86-92.
[57] 吴林志,熊健,马力,王兵,张国旗,杨金水.新型复合材料点阵结构的研究进展[J].力学进展,2012(01):41-67.
[58] Wadley HNG .Multifunctional periodic cellular metals[J].Philosophical transactions of the Royal Society. Mathematical, physical, and engineering sciences,2006(1838):31-68.
[59] K. Finnegan;G. Kooistra;H. N. G. Wadley;V. S. Deshpande .The compressive response of carbon fiber composite pyramidal truss sandwich cores[J].Zeitschrift fur Metallkunde,2007(12):1264-1272.
[60] Wadley H N G .Cellular metals manufacturing[J].Advances in Engineering Materials,2002,4(10):726.
[61] Haydn Wadley;Kumar Dharmasena;Yungchia Chen;Philip Dudt;David Knight;Robert Charette;Kenneth Kiddy .Compressive response of multilayered pyramidal lattices during underwater shock loading[J].International journal of impact engineering,2008(9):1102-1114.
[62] Hinman M;Dong Z et al.Spider silk:A mystery starting to unravel[J].Results and Problems in Cell Differentiation,1992,19:227.
[63] 蔡国斌,万勇,俞书宏.受生物启发模拟合成生物矿物材料及其机理研究进展[J].无机化学学报,2008(05):673-683.
[64] Pijush Kanti Chattopadhyay;Narayan C. Das;Santanu Chattopadhyay .Influence of interfacial roughness and the hybrid filler microstructures on the properties of ternary elastomeric composites[J].Composites, Part A. Applied science and manufacturing,2011(8):1049-1059.
[65] H F Shi;Y Zhao;X dong;C C He .Transcrystalline morphology of nylon 6 on the surface of aramid fibers[J].Polymer international,2004(11):1672-1681.
[66] He CC.;Dong X.;Zhang XQ.;Wang DJ.;Xu DF. .Morphology investigation of transcrystallinity at polyamide 66/aramid fiber interface[J].Journal of Applied Polymer Science,2004(5):2980-2983.
[67] 贺昌城,董侠,王笃金,徐端夫,韩志超.纤维增强树脂基复合材料中的横穿结晶研究[J].高分子通报,2008(04):12-21.
[68] Park SJ.;Seo MK.;Rhee KY. .Studies on mechanical interfacial properties of oxy-flourinated carbon fibers-reinforced composites[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2003(1/2):219-226.
[69] Xiaoqing Zhang;Chun Yan;Xinyu Fan .Interfacial Microstructure and Properties of Carbon Fiber Composites Modified with Graphene Oxide[J].ACS applied materials & interfaces,2012(3):1543-1552.
[70] 张玲,杨建民,冯超伟,李春忠.表面复合纳米SiO2和碳纳米管玻璃纤维增强尼龙6的结构与性能[J].高分子学报,2010(11):1333-1339.
[71] 程先华,薛玉君,谢超英.稀土对玻璃纤维填充金属-塑料多层复合材料抗冲击磨损性能的影响[J].中国稀土学报,2002(03):261-264.
[72] 沈峰 .透明聚氨酯胶粘剂及其在透明防弹材料上应用研究[J].中国胶黏剂,2001,11(03):41.
[73] N.R.L. Pearce;J.Summerscales .Improving the resin transfer moulding process for fabric-reinforced composites by modification of the fabric architecture[J].Composites, Part A. Applied science and manufacturing,2000(12):1433-1441.
[74] Young RT.;Baird DG. .Processing and properties of injection molded thermoplastic composites reinforced with melt processable glasses[J].Polymer Composites,2000(5):645-659.
[75] Tie Qi Li;Ming Qiu Zhang;Han Min Zeng .Processing dependent morphology, interfacial interaction and shear behavior of short carbon fiber reinforced PEEK[J].Composites, Part A. Applied science and manufacturing,2001(12):1727-1733.
[76] 王斌,杨建奎,张翔,程皓.芳纶复合材料用湿法环氧配方的研究[J].固体火箭技术,1999(02):52-55.
[77] Hosur M V;Abdullani M et al.Manufacturing and low-veloceity impact characterization of foam filled 3-D integrated core sandwich composites with hybrid face sheets[J].Computers & Structures,2005,69(02):167.
[78] 贺金瑞,宁荣昌.高含量连续玻璃纤维增强尼龙6复合材料成型工艺的研究[J].玻璃钢/复合材料,2005(05):29-32,24.
[79] Gama B A;Bogetti T A et al.Aluminum foam in tegralarm or:A new dimension in armor design[J].Computers & Structures,2001,52(3-4):381.
[80] 朱锡;黄祥兵 等.舰船抵御破甲弹的装甲结构形式及实验研究[J].兵器材料科学与工程,1994,17(04):27.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%