欢迎登录材料期刊网

材料期刊网

高级检索

以聚乙烯吡咯烷酮(PVP)为表面活性剂,采用水热法制备了GdF3∶Eu3+纳米晶.利用X射线衍射(XRD)、扫描电镜(SEM)、红外光谱(IR)和荧光光谱对样品进行了表征.XRD研究结果表明:制备的样品为正交结构的GdF3纳米晶.PVP的使用有利于减小晶粒尺寸和提高颗粒的均匀性.发射光谱研究结果表明:位于594 nm处的主发射峰来自于Eu3+的5 D0→7F1磁偶极跃迁.5D0→7F1与5 D0→7 F2跃迁发射强度比值表明:以PVP为表面活性剂制备的样品中Eu3+的局域对称性相对下降.激发光谱研究结果表明:Gd3+与Eu3+之间有较好的能量传递.纳米晶表面的PVP可能与稀土离子之间形成配位键.

参考文献

[1] Chunxia Li;Jun Lin .Rare earth fluoride nano-/microcrystals: synthesis, surface modification and application[J].Journal of Materials Chemistry: An Interdisciplinary Journal dealing with Synthesis, Structures, Properties and Applications of Materials, Particulary Those Associated with Advanced Technology,2010(33):6831-6847.
[2] Shen J;Sun LD;Yan CH .Luminescent rare earth nanomaterials for bioprobe applications[J].Dalton transactions: An international journal of inorganic chemistry,2008(42):5687-5697.
[3] Ruitao Chai;Hongzhou Lian;Zhiyao Hou .Preparation and Characterization of Upconversion Luminescent NaYF4:Yb~(3+), Er~(3+) (Tm~(3+))/ PMMA Bulk Transparent Nanocomposites Through In Situ Photopolymerization[J].The journal of physical chemistry, C. Nanomaterials and interfaces,2010(1):610-616.
[4] 杨幼平,黄可龙,刘人生,王丽平,刘素琴,张平民.水热-热分解法制备棒状和多面体状四氧化三钴[J].中南大学学报(自然科学版),2006(06):1103-1106.
[5] Li CX;Quan ZW;Yang PP;Yang J;Lian HZ;Lin J .Shape controllable synthesis and upconversion properties of NaYbF4/NaYbF4 : Er3+ and YbF3/YbF3 : Er3+ microstructures[J].Journal of Materials Chemistry: An Interdisciplinary Journal dealing with Synthesis, Structures, Properties and Applications of Materials, Particulary Those Associated with Advanced Technology,2008(12):1353-1361.
[6] He, F.;Yang, P.;Wang, D.;Niu, N.;Gai, S.;Li, X. .Self-assembled β-NaGdF_4 microcrystals: Hydrothermal synthesis, morphology evolution, and luminescence properties[J].Inorganic Chemistry: A Research Journal that Includes Bioinorganic, Catalytic, Organometallic, Solid-State, and Synthetic Chemistry and Reaction Dynamics,2011(9):4116-4124.
[7] 冉营营,赵军伟,孔祥贵.NaYF4:Eu3+纳米粒子和六棱柱的水热控制合成与发光性质[J].发光学报,2010(04):556-560.
[8] Daqin Chen;Yuansheng Wang;Yunlong Yu .Structure and Optical Spectroscopy of Eu-Doped Glass Ceramics Containing GdF3 Nanocrystals[J].The journal of physical chemistry, C. Nanomaterials and interfaces,2008(48):18943-18947.
[9] Xiaoting Zhang;Tomokatsu Hayakawa;Masayuki Nogami .Variation in Eu~(3+) luminescence properties of GdF_3:Eu~(3+) nanophosphors depending on matrix GdF_3 polytype[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2011(5):2076-2080.
[10] Sayed, F.N.;Grover, V.;Sudarsan, V.;Pandey, B.N.;Asthana, A.;Vatsa, R.K.;Tyagi, A.K..Multicolored and white-light phosphors based on doped GdF _3 nanoparticles and their potential bio-applications[J].Journal of Colloid and Interface Science,2012:161-170.
[11] Rodriguez-Liviano, S.;Nu?ez, N.O.;Rivera-Fernández, S.;De La Fuente, J.M.;Oca?a, M. .Ionic liquid mediated synthesis and surface modification of multifunctional mesoporous Eu:GdF_3 nanoparticles for biomedical applications[J].Langmuir: The ACS Journal of Surfaces and Colloids,2013(10):3411-3418.
[12] 李霞,刘桂霞,董相廷,王进贤.特殊形貌GdF3:Eu3+纳米发光材料的制备及性能[J].高等学校化学学报,2011(01):23-27.
[13] Jerome Deschamps;Audrey Potdevin;Nathalie Caperaa .A promising way to obtain large, luminescent and transparent thick films suitable for optical devices[J].New Journal of Chemistry,2010(3):385-387.
[14] Gang Wang;Hui Wang;Jintao Bai.PVP-assisted assembly of lanthanum carbonate hydroxide with hierarchical architectures and their luminescence properties[J].Chemical engineering journal,2013:386-393.
[15] 胡宝云,黄剑锋,张钦峰,张海,曹丽云,吴建鹏.模板剂对微波水热合成CdS微晶相组成、形貌及光学性能的影响[J].人工晶体学报,2011(01):139-143.
[16] 冯怡,马天翼,刘蕾,袁忠勇.无机纳米晶的形貌调控及生长机理研究[J].中国科学B辑,2009(09):864-886.
[17] 陈欢,揣晓红,王丽丽,翟雪松,姜涛,赵丹,秦伟平.水溶性NaYF4:Yb/Tm纳米粒子的制备及其上转换发光性质[J].发光学报,2010(04):538-542.
[18] 朱军,李志友,黄苏萍,张海斌,陈哲东,周科朝.聚乙烯吡咯烷酮对纳米羟基磷灰石形貌的影响及其机理分析[J].粉末冶金材料科学与工程,2011(05):742-746.
[19] 郑国源,龙飞,马浩,吴一,邹正光.表面活性剂对合成黄铁矿型FeS2的影响研究[J].人工晶体学报,2013(01):149-154.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%