欢迎登录材料期刊网

材料期刊网

高级检索

针对近年来材料辐照改性、辐照损伤等复杂微观缺陷结构的研究,以二元Fe-Cu合金辐照损伤缺陷及微量Cu析出物的微观结构研究为基础,综合论述正电子湮没谱学技术(PALS,CDB,AMOC)在Fe-Cu合金复杂微观缺陷结构研究中的应用研究进展.

参考文献

[1] Brandt W;Dupasquier A.Positron solid-sate physics[M].New York:North-Holland,1983
[2] Puska M J;Niminen R M .Theory of positrons in solids and on solid surfaces[J].Reviews of Modern Physics,1994,66(03):841.
[3] Dupasquier A;Mills Jr A P.Positron spectroscopy of solids[M].Amsterdam:IOS Press,1995
[4] Asoka-Kumar P;Alatalo M;Ghosh V J et al.Increased elemental specificity of positron annihilation spectra[J].Physical Review Letters,1996,77(10):2097.
[5] 王少阶.应用正电子谱学[M].武汉:湖北科学技术出版社,2008
[6] 滕敏康.正电子湮灭谱学及其应用[M].北京:原子能出版社,2000
[7] 郁伟中.正电子物理及其应用[M].北京:科学出版社,2003
[8] Nagai Y;Tang Z;Hasegawa M et al.Irradiation-induce Cu aggregations in Fe:An origin of embrittlement of reactor pressure vessel steels[J].Physical Review B:Condensed Matter,2001,63(13):134110.
[9] Onitsuka T;Takenaka M;Kuramoto E et al.Deformationenhanced Cu precipitation in Fe-Cu alloy studied by positron annihilation spectroscopy[J].Physical Review B:Condensed Matter,2001,65(01):012204.
[10] Nagai Y.;Takadate K.;Tang Z.;Ohkubo H.;Sunaga H.;Takizawa H. Hasegawa M. .Positron annihilation study of vacancy-solute complex evolution in Fe-based alloys - art. no. 224202[J].Physical review, B. Condensed matter and materials physics,2003(22):4202-0.
[11] Hasegawa M;Tang Z;Nagai Y et al.Irradiation-induced vacancy and Cu aggregations in Fe-Cu model alloys of reactor pressure vessel steels:State-of-the-art positron annihilation spectroscopy[J].Philosophical Magazine,2005,85(4-7):467.
[12] K. Inoue;Y. Nagai;Z. Tang;T. Toyama;Y. Hosoda;A. Tsuto;M. Hasegawa .Time evolution of positron affinity trapping at embedded nanoparticlesby age-momentum correlation[J].Physical review, B. Condensed matter and materials physics,2011(11):115459:1-115459:5.
[13] Xu Q;Yoshiie T;Sato K .Does dependence of Cu precipitate formation in Fe-Cu model alloys irradiated with fission neutrons[J].Physical Review B:Condensed Matter,2006,73(13):34115.
[14] Odette G R .On the dominant of irradiation embrittlement of reactor pressure vessel steels[J].Scripta Metallurgica,1983,17(10):1183.
[15] Buswell JT.;Mcelroy RJ.;Dumbill S.;Ray PHN.;Mace J. Sinclair RN.;Phythian WJ. .IRRADIATION-INDUCED MICROSTRUCTURAL CHANGES, AND HARDENING MECHANISMS, IN MODEL PWR REACTOR PRESSURE VESSEL STEELS[J].Journal of Nuclear Materials: Materials Aspects of Fission and Fusion,1995(0):196-214.
[16] Odette GR.;Wirth BD. .A COMPUTATIONAL MICROSCOPY STUDY OF NANOSTRUCTURAL EVOLUTION IN IRRADIATED PRESSURE VESSEL STEELS[J].Journal of Nuclear Materials: Materials Aspects of Fission and Fusion,1997(0):157-171.
[17] Nagai Y;Hasegawa M;Tang Z et al.Positron confinement in ultrafine embedded particles:Quantum-dot-like state in an Fe-Cu alloys[J].Physical Review B:Condensed Matter,2000,61(10):6574.
[18] Odette G R.Encyclopedia of materials:Science and technology[M].London:Elsevier Ltd,2001
[19] Marian J.;Wirth BD.;Schaublin R.;Perlado JM.;de la Rubia TD. .(100)-loop characterization in alpha-Fe: comparison between experiments and modeling[J].Journal of Nuclear Materials: Materials Aspects of Fission and Fusion,2002(Pt.b):871-875.
[20] Lambrecht M;Almazouzi A .Positron annihilation in neutron irradiated iron-based materials[J].Journal of Physics,2011,265(01):012009.
[21] Xingzhong Cao;Qiu Xu;Koichi Sato;Toshimasa Yoshiie .Migration behavior of vacancies in electron irradiated Fe-Cu alloys[J].Physica status solidi, C. Current topics in solid state physics: PSS,2009(11):2355.
[22] Puska M J;Nieminen R M .Defect spectroscopy with positron:A general calculational method[J].Journal of Physics F:Metal Physics,1983,13:333.
[23] Phythian W J;English C A .Microstructural evolution in reactor pressure vessel steels[J].Journal of Nuclear Materials,1993,205:162.
[24] Xu Q;Yoshiie T;Sato K .Stability of Cu precipitates in FeCu model alloys irradiated at high temperatures with fission neutrons[J].Philosophical Magazine Letters,2008,88(05):353.
[25] Ishizaki T.;Yoshiie T.;Sato K.;Yanagita S.;Xu Q.;Komatsu M.;Kiritani M. .Precipitation of Cu in Fe-Cu alloys by high-speed deformation[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2003(1/2):102-107.
[26] Lynn K G;MacDonald J R;Boie R A et al.Positron-annihilation momentum profiles in aluminum:Core contribution and the independent-partical model[J].Physical Review Letters,1977,38(05):241.
[27] Hugenschmidt C;Pikart P;Stadlbauer M;Schreckenbach K .High elemental selectivity to Sn submonolayers embedded in Al using positron annihilation spectroscopy[J].Physical review, B. Condensed matter and materials physics,2008(9):092105-1-092105-4-0.
[28] Suzuki N.;Hyodo T.;Nagai Y. .Direct observation of the temperature variation of the short positron lifetime in metals by using the positron age-momentum correlation technique[J].Physical Review.B.Condensed Matter,1999(14):R9893-R9895.
[29] Fuminobu Hori;Shinji Tannaka;Eiichi Kuramoto et al.Nano-size Cu cluster formation in iron by Cu ion implantations[J].Nuclear Instruments and Methods in Physics Research B:Beam Interaction with Materials & Atoms,2006,245:180.
[30] 陈祥磊 .基于中性原子叠加模型的正电子计算[D].中国科学技术大学,2009.
[31] Campillo J M;Robles E;Ogando Plazaola F .Positron lifetime calculation for the elements of the periodic table[J].Journal of Physics:Condensed Matter,2007,19:176222.
[32] Boronski E;Nieminen R M .Electron positron density-functional theory[J].Physical Review B:Condensed Matter,1986,34(06):3820.
[33] Alatalo M.;Hakala M.;Kauppinen H.;Korhonen T.;Puska MJ.;Saarinen K.;Hautojarvi P.;Nieminen RM.;Barbiellini B. .THEORETICAL AND EXPERIMENTAL STUDY OF POSITRON ANNIHILATION WITH CORE ELECTRONS IN SOLIDS[J].Physical Review.B.Condensed Matter,1996(4):2397-2409.
[34] Tang Z.;Hasegawa M.;Nagai Y.;Saito M. .Density functional study on metastable bcc copper: Electronic structure and momentum density of positron-electron pairs - art. no. 195108[J].Physical Review.B.Condensed Matter,2002(19):5108-0.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%