欢迎登录材料期刊网

材料期刊网

高级检索

通过搅拌铸造工艺制备出SiCP体积分数分别为2%、5%、10%和15%的4种5 μm SiCP/镁合金(AZ91)复合材料.对5 μm SiCP/AZ91进行了固溶、锻造和热挤压.通过与AZ91对比,研究了SiCP对AZ91基体热变形后显微组织和力学性能的影响规律.结果表明:SiCP/AZ91热变形后的晶粒尺寸取决于SiCP的体积分数.SiCP的体积分数由0%增加到10%时,SiCP/AZ91热变形后的平均晶粒尺寸减小;当SiCP颗粒继续增加到体积分数为15%时,平均晶粒尺寸反而增大.SiCP的加入能显著提高AZ91的屈服强度和弹性模量,并随颗粒体积分数的增加而增大.SiCP对AZ91基体的强化作用主要源于位错强化、细晶强化和载荷传递作用,其中,细晶强化对屈服强度的贡献最大.

参考文献

[1] Kojima Y,Kamado S.Fundamental magnesium researches in Japan[J].Materials Science Forum,2005,488:9-16.
[2] 李淑波,郑明毅,甘为民,等.SiCw/AZ91镁基复合材料及AZ91镁合金的高温变形行为[J].复合材料学报,2005,22(3):103-108.Li Shubo,Zheng Mingyi,Gan Weimin,et al.Hot deformation behavior of SiCw/AZ91 magnesium matrix composite and AZ91 alloy[J].Acta Materiae Compositae Sinica,2005,22(3):103-108.
[3] 谢文,刘越,张振伟,等.挤压温度对15vol%SiCP/Mg-9Al镁基复合材料拉伸性能与断口形貌的影响[J].复合材料学报,2006,23(6):127-133.Xie Wen,Liu Yue,Zhang Zhenwei,et al.Influence of extrusion temperature on the tensile properties of 15vol% SiCP/Mg-9Al composite[J].Acta Materiae Compositae Sinica,2006,23(6):127-133.
[4] ZhangCF,FanTX,CaoW,etal.Size controlofin-situ formed reinforcement in metal melts-theoretical treatment and application to in-situ (AlN + Mg2Si)/Mg composites[J].Composites Science and Technology,2009,69 (15):2688-2694.
[5] Wang H Y,Jiang Q C,Li X L,et al.In situ synthesis of TiC/Mg composites in molten magnesium[J].Scripta Materialia,2003,48(9):1349-1354.
[6] 何广进,李文珍.纳米颗粒分布对镁基复合材料强化机制的影响[J].复合材料学报,2013,30(2):105-110.He Guangjin,Li Wenzhen.Influence of nano particle distribution on the strengthening mechanisms of magnesium matrix composites[J].Acta Materiae Compositae Sinica,2013,30(2):105-110.
[7] Wang X J,Hu X S,Wu K,et al.Hot deformation behavior of SiCP/AZ91 magnesium matrix composite fabricated by stir casting[J].Materials Science and Engineering:A,2008,492(1):481-485.
[8] Deng K K,Wu K,Wang X J,et al.Microstructure evolution and mechanical properties of a particulate reinforced magnesium matrix composites forged at elevated temperatures[J].Materials Science and Engineering:A,2010,527(6):1630-1635.
[9] Deng K K,Wang X J,Gan W M,et al.Isothermal forging of AZ91 reinforced with 10 vol% silicon carbon particles[J].Materials Science and Engineering:A,2011,528(3):1707-1712.
[10] Nie K B,Wu K,Wang X J,et al.Multidirectional forging of magnesium matrix composites:effect on microstructures and tensile properties[J].Materials Science and Engineering:A,2010,527(27):7364-7368.
[11] Wu K,Deng K K,Nie K B,et al.Microstructure and mechanical properties of SiCP/AZ91 composite deformed through a combination of forging and extrusion process[J].Materials Design,2010,31(8):3929-3932.
[12] Deng K K,Wu K,Wu Y W,et al.Effect of submicron size SiC particulates on microstructure and mechanical properties of AZ91 magnesium matrix composites[J].Journal of Alloys and Compounds,2010,504(2):542-547.
[13] Doherty R D,Hughes D A,Humphreys F J,et al.Current issues in recrystallization:a review[J].Materials Science and Engineering:A,1997,238(2):219-274.
[14] Humphreys F J.Local lattice rotations at second phase particles in deformed metals[J].Acta Metallurgica,1979,27(12):1801-1814.
[15] Zhang Z,Chen D L.Contribution of Orowan strengthening effect in particulate reinforced metal matrix nanocomposites[J].Materials Science and Engineering:A,2008,483:148-152.
[16] Habibnejad-Korayem M,Mahmudi R,Poole W J.Enhanced properties of Mg-based nano-composites reinforced with Al2O3 nano-particles[J].Materials Science and Engineering:A,2009,519(1):198-203.
[17] Koike J.Enhanced deformation mechanisms by anisotropic plasticity in polycrystalline Mg alloys at room temperature[J].Metallurgical and Materials Transactions A,2005,36(7):1689-1696.
[18] Aikin Jr R M,Christodoulou L.The role of equiaxed particles on the yield stress of composites[J].Scripta Metal-lurgica Materialia,1991,25(1):9-14.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%