欢迎登录材料期刊网

材料期刊网

高级检索

采用粉末冶金方法制备石墨铜复合材料(Gra./Cu)和碳纳米管铜复合材料(CNTs/Cu),研究2种铜基复合材料的真空电弧截流现象和阴极斑点特性.结果表明,与Gra./Cu相比,CNTs/Cu在真空放电过程中电弧更加稳定,且分散性好,截流值小;在正对阳极处CNTs/Cu的真空电弧烧蚀坑明显比Gra./Cu的细小,灼痕直径约为0.1~5 μm,分布面积也较小,而Gra./Cu的灼痕直径为10~100 μm;两者的相同之处在于,在电击穿过程中阴极斑点的运动呈一种随机的、突变式的跳跃,而且选择性发生在Cu相上,Cu相被消耗.总之,CNTs/Cu比Gra./Cu具有更高的耐电弧烧蚀能力,CNTs的加入可以有效地增加铜基复合材料的电弧稳定性和降低截流值.

参考文献

[1] 王庆丰,崔树茂,张锐丽,杨生春,杨志懋,丁秉钧.纳米CuCr25合金的阴极斑点运动特性[J].稀有金属材料与工程,2008(04):641-643.
[2] Boxman R L et al.[J].IEEE Transactions on Plasma Sciences,1997,25:1175.
[3] Jüttner B .[J].Journal of Physics D: Applied Physics,2001,34:3.
[4] Smeets R.P.P. .The origin of current chopping in vacuum arcs[J].IEEE Transactions on Plasma Science,1989(2):303-310.
[5] Yamamoto A.;Okutomi T. .Instability of vacuum arc in Ag-Cu contact alloys[J].IEEE Transactions on Plasma Science,1993(5):463-468.
[6] 张程煜,乔生儒,杨志懋,王亚平.纯石墨和铜-石墨的阴极斑点与截流值研究[J].稀有金属材料与工程,2009(03):488-491.
[7] Iijima S .[J].Nature,1991,354(6348):56.
[8] Wang J;Feng Y;Li S et al.[J].Transactions of Nonferrous Metals Society of China,2009,19(01):113.
[9] Kenneth K H W;Martin Z A;Jeffery L H et al.[J].CARBO,2009,47(11):2571.
[10] Lim D S;An J W;Lee H J .[J].WEAR,2002,252:51.
[11] Chen W X;Tu J P;Wang L Y et al.[J].CARBO,2003,41(02):215.
[12] 许玮,胡锐,高媛,寇宏超,李金山,傅恒志.碳纳米管增强铜基复合材料的载流摩擦磨损性能研究[J].摩擦学学报,2010(03):303-307.
[13] 李震彪;程礼椿;邹积岩 et al.[J].低压电器,1997,1:12.
[14] Lafferty J;程积高;喻立贵.真空电弧理论和应用[M].北京:机械工业出版社,1985
[15] Wang JB;Zhang Y;Yang MG;Ding BJ;Yang ZM .Observation of arc discharging process of nanocomposite Ag-SnO2 and La-doped Ag-SnO2 contact with a high-speed camera[J].Materials Science & Engineering, B. Solid-State Materials for Advanced Technology,2006(1/3):230-234.
[16] 苏亚风;杨志懋;丁秉钧 .[J].稀有金属材料与工程,2007,36(01):68.
[17] 承欢;江剑平.阴极电子学[M].Xi'an:Xi'an Institute of Telecommunication Engineering Press,1986
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%