综述了Ti-Si-N超硬纳米复合薄膜结构形式的研究进展.介绍了研究者对Si原子在Ti-Si-N中形成的晶界是否为晶态的认识与研究,阐述了Si原子在Ti-Si-N中所形成的界面结构形式的研究现状以及Ti-Si-N薄膜沉积过程中的形成机制,并展望了Ti-Si-N超硬纳米复合薄膜今后的研究方向.
参考文献
[1] | Li S Z;Shi Y L;Peng H R .Ti-Si-N Films prepared by plasma-enhanced chemical vapor deposition[J].Plasma Chemistry and Plasma Processing,1992,12(03):287. |
[2] | Niedrhofer A;Nesladek P;M(a)nnling H D et al.Structural properties,internal stress and thermal stability of nc-TiN/a-Si3 N4,nc-TiN / TiSix and nc-(Ti1-y Aly Six) N superhard nanocomposite coatings reaching the hardness of diamond[J].Surface and Coatings Technology,1999,120-121:173. |
[3] | Veprek S;Niederhofer A;Moto K et al.Composition,nanostructure and origin of the ultrahardness in nc-TiN/a-Si3N4 /a-and nc-TiSi2 nanocomposites with Hv =80 to ≥ 105GPa[J].Surface and Coatings Technology,2000,133-134:152. |
[4] | Kim K H;Choi S;Yoon S .Superhard Ti-Si-N coatings by a hybrid system of arc ion plating and sputtering techniques[J].Surface and Coatings Technology,2002,161(2-3):243. |
[5] | Zhang S.;Sun D.;Fu YQ.;Du HJ. .Recent advances of superhard nanocomposite coatings: a review[J].Surface & Coatings Technology,2003(2/3):113-119. |
[6] | Bendavid A;Martin PJ;Cairney J;Hoffman M;Fischer-Cripps AC .Deposition of nanocomposite TiN-Si3N4 thin films by hybrid cathodic arc and chemical vapor process[J].Applied physics, A. Materials science & processing,2005(1):151-158. |
[7] | A. A. Voevodin;J. S. Zabinski;C. Muratore .Recent Advances in Hard, Tough, and Low Friction Nanocomposite Coatings[J].Tsinghua Science and Technology,2005(6):665-679. |
[8] | Sandu CS;Sanjines R;Benkahoul M;Medjani F;Levy F .Formation of composite ternary nitride thin films by magnetron sputtering co-deposition[J].Surface & Coatings Technology,2006(7):4083-4089. |
[9] | Lu CS;Mai YW;Shen YG .Recent advances on understanding the origin of superhardness in nanocomposite coatings: A critical review[J].Journal of Materials Science,2006(3):937-950. |
[10] | Veprek S;Reiprich S .Superhard nanocrystalline composite materials:The TiN/Si3N4 system[J].Thin Solid Films,1995,268(1-2):64. |
[11] | Vaz F;Rebouta L;Almeida B et al.Structural analysis of Ti1-xSixNy nanocomposite films prepared by reactive magnetron sputtering[J].Surface and Coatings Technology,1999,120-121:166. |
[12] | Hans Soderberg;Magnus Oden;Jon M. Molina-Aldareguia;Lars Hultman .Nanostructure formation during deposition of TiN/SiN_(x) nanomultilayer films by reactive dual magnetron sputtering[J].Journal of Applied Physics,2005(11):114327-1-114327-8-0. |
[13] | Hans Soderberg;Magnus Oden;Tommy Larsson;Lars Hultman;Jon M. Molina-Aldareguia .Epitaxial stabilization of cubic-SiN_(x) in TiN/SiN_(x) multilayers[J].Applied physics letters,2006(19):191902-1-191902-3-0. |
[14] | Hao SQ;Delley B;Veprek S;Stampfl C .Superhard nitride-based nanocomposites: Role of interfaces and effect of impurities[J].Physical review letters,2006(8):6102-1-6102-4-0. |
[15] | Hao SQ;Delley B;Stampfl C .Role of oxygen in TiN(111)/SixNy/TiN(111) interfaces: Implications for superhard nanocrystalline nc-TiN/a-Si3N4 nanocomposites[J].Physical review, B. Condensed matter and materials physics,2006(3):5424-1-5424-10-0. |
[16] | Hao SQ;Delley B;Stampfl C .Structure and properties of TiN(111)/SixNy/TiN(111) interfaces in superhard nanocomposites: First-principles investigations[J].Physical review, B. Condensed matter and materials physics,2006(3):5402-1-5402-12-0. |
[17] | Kong M;Zhao WJ;Wei L;Li GY .Investigations on the microstructure and hardening mechanism of TiN/Si3N4 nanocomposite coatings[J].Journal of Physics, D. Applied Physics: A Europhysics Journal,2007(9):2858-2863. |
[18] | Hultman L;Bareno J;Flink A;Soderberg H;Larsson K;Petrova V;Oden M;Greene JE;Petrov I .Interface structure in superhard TiN-SiN nanolaminates and nanocomposites: Film growth experiments and ab initio calculations[J].Physical review, B. Condensed matter and materials physics,2007(15):5437-1-5437-6-0. |
[19] | R. F. Zhang;A. S. Argon;S. Veprek .Electronic structure, stability, and mechanism of the decohesion and shear of interfaces in superhard nanocomposites and heterostructures[J].Physical review, B. Condensed matter and materials physics,2009(24):245426:1-245426:13. |
[20] | R. F. Zhang;A. S. Argon;S. Veprek .Understanding why the thinnest SiN_x interface in transition-metal nitrides is stronger than the ideal bulk crystal[J].Physical review, B. Condensed matter and materials physics,2010(24):245418:1-245418:7. |
[21] | Ivashchenko V;Veprek S;Shevchenko V .Comparative firstprinciples molecular dynamics study of TiN (001)/SiN/TiN (001) and TiN(001) / SiC/TiN(001) interfaces in superhard nanocomposites[J].Nanomater:Appl Prop,2011,1:38. |
[22] | Tobias Marten;Eyvaz I. Isaev;Bjorn Ailing;Lars Hultman;Igor A. Abrikosov .Single-monolayer SiN_x embedded in TiN: A first-principles study[J].Physical review, B. Condensed matter and materials physics,2010(21):212102:1-212102:4. |
[23] | Liu X;Gottwald B;Wang C.The basic structure of Ti-Si-N superhard nanocomposite coatings:Ab initio studies[A].Berlin,Germany,2008 |
[24] | Liu X J .Basic structure and formation mechanism of Ti-Si-N superhard nano composite coatings[D].Stuttgart:University Stuttgart,2009. |
[25] | 张亮 .Ti-Si-N类超硬薄膜的结构和成形机理的第一原理计算[D].包头:内蒙古科技大学,2009. |
[26] | Xuejie Liu;Yuan Ren;Xin Tan;Shiyang Sun;Engelbert Westkaemper .The structure of Ti-Si-N superhard nanocomposite coatings: ab initio study[J].Thin Solid Films,2011(2):876-880. |
[27] | Fengzai Tang;Baptiste Gault;Simon P. Ringer;Phil Avi Bendavid;Julie M. Cairney .Microstructural investigation of Ti-Si-N hard coatings[J].Scripta materialia,2010(2):192-195. |
[28] | Fengzai Tang;Baptiste Gault;Simon P. Ringer;Julie M. Cairney .Optimization of pulsed laser atom probe (PLAP) for the analysis of nanocomposite Ti-Si-N films[J].Ultramicroscopy,2010(7):836-843. |
[29] | 马大衍,马胜利,徐可为,薛其坤,S. Veprek.氧杂质致Ti-Si-N薄膜高硬度损失的机理[J].材料研究学报,2008(03):287-290. |
[30] | Zhang RF;Veprek S .On the spinodal nature of the phase segregation and formation of stable nanostructure in the Ti-Si-N system[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2006(1-2):128-137. |
[31] | Zhang RF;Veprek S .Crystalline-to-amorphous transition in Ti1-xSixN solid solution and the stability of fcc SiN studied by combined ab initio density functional theory and thermodynamic calculations[J].Physical review, B. Condensed matter and materials physics,2007(17):174105-1-174105-6-0. |
[32] | Zhang RF;Veprek S .Phase stabilities of self-organized nc-TiN/a-Si3N4 nanocomposites and of Ti1-xSxNy solid solutions studied by ab initio calculation and thermodynamic modeling[J].Thin Solid Films: An International Journal on the Science and Technology of Thin and Thick Films,2008(8):2264-2275. |
[33] | S. Kodambaka;V. Petrova;A. Vailionis;P. Desjardins;D. G. Cahill;I. Petrov;J. E. Greene .TiN(001) and TiN(111) island coarsening kinetics, in-situ scanning tunneling microscopy studies[J].Thin Solid Films: An International Journal on the Science and Technology of Thin and Thick Films,2001(2):164-168. |
[34] | Pathways of atomistic processes on TiN(001) and (111) surfaces during film growth: an ab initio study[J].Journal of Applied Physics,2003(11):9086-9094. |
[35] | Marcel A. Wall;David G. Gahill;I. Petrov;D. Gall;J. E. Greene .Nucleation kinetics during homoepitaxial growth of TiN(001) by reactive magnetron sputtering[J].Physical review, B. Condensed matter and materials physics,2004(3):035413.1-035413.8. |
[36] | Liu LM;Wang SQ;Ye HQ .First-principles study of the effect of hydrogen on the metal-ceramic interface[J].Journal of Physics. Condensed Matter,2005(35):5335-5348. |
[37] | Ruberto C;Vojvodic A;Lundqvist BI .Nature of versatile chemisorption on TiC(111) and TiN(111) surfaces[J].Solid State Communications,2007(26):48-52. |
[38] | Liu X J;Zhao L L;Ren Y et al.The configuration and evolution of Ti-Si-N island on TiN(001) surface:Ab initio study[J].Advances in Materials Research,2011,295-297:301. |
[39] | Wang Y;Chen M;Zhou F;Ma E .High tensile ductility in a nanostructured metal.[J].Nature,2002(6910):912-915. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%