欢迎登录材料期刊网

材料期刊网

高级检索

以漂珠隔热耐火材料为研究对象,通过调整漂珠的添加量(25%、35%、65%和85%)来改变试样的气孔结构参数,并研究了漂珠的添加量对试样气孔结构参数的影响,分别借助于回归分析理论和灰色关联理论探讨了试样的气孔率、以及气孔孔径区间等气孔结构参数与热导率之间的相关性。结果表明,随着漂珠添加量的增加,试样的闭口气孔率显著增加,但开口气孔率变化不明显;各组试样气孔孔径分布范围为1~300#m,其中以50~100#m孔径区间的气孔为主。在一定温度范围内,试样的热导率随着总气孔率的增大而呈指数关系减小;不同孔径区间与热导率的灰色关联分析表明,〈150#m范围内的气孔与热导率的关联度最大。

Pore structure parameters of cenosphere insulating refractory were changed by adjusting the content of the cenosphere additive(25%,35%,65% and 85%,respectively).The influence of cenosphere additions on pore structure parameters of the specimens was investigated.Based on the regression analysis and gray relational theory,the correlation of porosity and pore size distribution with thermal conductivity of the specimens was analyzed.The results showed that closed porosity of the specimens was increased significantly with increasing of cenosphere additive content;however,the apparent porosity didn't change obviously.The range of pore size distribution of the specimens was about 1-300μm,however,the pore diameter was mainly distributed in the range of 50-100μm.In a certain temperature range,the thermal conductivity related to the total porosity by an exponent function and the dependence exponent decreased as the total porosity increased.Based on grey relation theory,the study of correlation of pore size interval with thermal conductivity indicated that the pore size interval of 150μm had the highest correlation index.

参考文献

[1] Santos W N .Effect of moisture and porosity on the ther real properties of a conventional refractory concrete[J].Journal of the European Ceramic Society,2003,23:745-755.
[2] Loeb A L .Thermal conductivity of porous materials[J].Journal of the American Ceramic Society,1954,37(02):96-99.
[3] Barea R;Osendi MI;Ferreira JMF;Miranzo P .Thermal conductivity of highly porous mullite material[J].Acta materialia,2005(11):3313-3318.
[4] Cernuschi F;Ahmaniemi S;Vuoristo P et al.Modelling of thermal conductivity of porous materials,application to thick thermal barrier coatings[J].Journal of the European Ceramic Society,2004,24:2657-2667.
[5] Bansal N P;Zhu D M .Thermal conductivity of zirconia-a-lumina composites[J].Ceramics International,2005,31:911-916.
[6] 朱伯铨,方斌祥,李享成,万洪波,李宁.刚玉质浇注料气孔孔径分布及其与强度的相关性[J].硅酸盐学报,2009(06):994-999.
[7] Zhu B Q;Fang B F;Gao X et al.Effect of pore structure parameters on thermal properties of corundum based eastables[J].Materials Science and Engineering,2011,18:222010.
[8] 关振铎;张中太;焦金生.无机材料物理性能[M].北京:清华大学出版社,1992:131-138.
[9] 石振海,李克智,李贺军,王闯,李照谦.闭孔碳微球泡沫材料制备工艺与性能研究[J].功能材料,2005(12):1944-1946,1950.
[10] 楚雷田;吴秋玲 .A12O3含量和气孔率及温度对耐火材料热导率的影响[J].国外耐火材料,2004,29(01):53-56.
[11] 杨丁熬,韩应江.热导率对耐火材料的影响[J].国外耐火材料,2002(06):35-38.
[12] 邓聚龙.灰色系统理论[M].武汉:华中理工大学出版社,2002:10-30.
[13] 朱卫华,印友法,蒋林华,车黎明.硅粉水泥石中微孔孔径分布及其对强度的影响[J].建筑材料学报,2004(01):14-18.
[14] 方斌祥,朱伯铨,李享成.浇注料孔径分布与强度关系的灰色系统研究[J].稀有金属材料与工程,2009(z2):1185-1188.
[15] 李凌智,张敏,张瑾,柳清菊.SiO2介孔薄膜材料的隔热理论[J].功能材料,2010(06):927-930.
[16] David Song;Gang Chen .Thermal conductivity of periodic microporous silicon films[J].Applied physics letters,2004(5):687-689.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%