欢迎登录材料期刊网

材料期刊网

高级检索

采用磁悬浮感应熔炼及退火处理的方法,制备La1.9Ti0.1MgNi9合金.对合金样品的XRD、PCT和电化学测试表明,所有样品均由多相组成,LaNi5相为主相.当退火温度达到1173 K时,合金中LaMg2Ti9相消失,Ti2Ni相出现.退火处理能提高合金的晶化程度、降低吸放氢平台压.退火1073 K合金的有效吸氢量较高,在303 K时达到1.25%(质量分数).La1.9Ti0.1MgNi9合金退火后,放电容量、循环稳定性以及高倍率放电性能得到极大改善,以1173 K退火合金电化学性能较好,其最大放电容量为377 mAh/g,1100 mA/g电流密度下的高倍率放电性能为0.839,经112次充放电循环后放电容量保持率为60%.

La1.9Ti0.1MgNi9 alloys were prepared by magnetic levitation melting followed by annealing treatments. The results of XRD, PCT and electrochemical measurements show that all samples possess a multiphase structure, and LaNi5 phase is the main phase. LaMg2Ni9 phase disappears and Ti2Ni phase appears at 1173 K. Annealed alloys exhibit higher compositional homogeneity and lower absorption/desorption plateau pressures compared to as-cast alloy. The effective hydrogen storage capacity of the alloy annealed at 1073 K is the highest, and it reaches 1.25% (mass fraction) at 303 K. Annealing not only enhances the discharge capacity,but also improves the cyclic stability and the high rate dischargeability markedly. La1.9Ti0.1MgNi9 alloy annealed at 1173 K presents good electrochemical performance with the maximum discharge capacity of 377 mAh/g, the HRD1100 of 0.839 and the retention of discharge capacity of 60% after 112 charge/discharge cycles.

参考文献

[1] Kohno T et al.[J].Journal of Alloys and Compounds,2000,311:L5.
[2] Liao B et al.[J].Journal of Alloys and Compounds,2006,415:239.
[3] Zhang P et al.[J].Electroehim Acta,2006,51:6400.
[4] Liu Y F et al.[J].International Journal of Hydrogen Energy,2008,33:124.
[5] Li C J et al.[J].Journal of Alloys and Compounds,1999,284:270.
[6] 王国清,张羊换,董小平,赵栋梁,郭世海,王新林.La替代Mm对低钴AB5型贮氢合金电化学性能的影响[J].稀有金属材料与工程,2006(03):403-407.
[7] Santos A R et al.[J].International Journal of Hydrogen Energy,2004,29:1253.
[8] 张婷婷,王家淳,潘崇超,于荣海.(TiZr0.35)(V0.5Mn1.1-xCr0.4Nix贮氢合金的相结构和电化学性能[J].稀有金属材料与工程,2008(05):808-811.
[9] Liu Y F et al.[J].Journal of Alloys and Compounds,2005,395:291.
[10] Zhang YH;Li BW;Ren HP;Wu ZW;Cai Y;Wang XL .Effects of substituting Ni with Al on the microstructure and electrochemical performances of the as-cast and quenched La-Mg-Ni-based (PuNi3-type) hydrogen storage alloys[J].Materials Chemistry and Physics,2007(1):86-91.
[11] Guo J et al.[J].Journal of Alloys and Compounds,2007,429:348.
[12] He M et al.[J].International Journal of Hydrogen Energy,2007,32:3387.
[13] Dong X P et al.[J].Journal of Rare Earths,2008,26(01):99.
[14] Song D W et al.[J].Journal of Rare Earths,2008,26(03):398.
[15] Jiang W Q et al.[J].International Journal of Hydrogen Energy,2009,34:4827.
[16] Guo J et al.[J].International Journal of Hydrogen Energy,2007,32:2412.
[17] Nomura K et al.[J].Journal of the Less-Common Metals,1985,107(02):221.
[18] Kisi E H et al.[J].Journal of Alloys and Compounds,1992,185:369.
[19] Nakamura Y et al.[J].Journal of Alloys and Compounds,1994,210:299.
[20] Kadir K et al.[J].Journal of Alloys and Compounds,2000,302:112.
[21] Takeshita H.T.;Tanaka H. .Hydrogenation characteristics of ternary alloys containing Ti_4Ni_2X (X=O, N, C)[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2000(2):188-193.
[22] Pan H G et al.[J].Journal of the Electrochemical Society,2003,150(05):A565.
[23] 王福山,王春生,陈立新.(Ti0.7Zr0.2V0.1)Ni贮氢合金的电化学性能及氢致相变研究[J].稀有金属材料与工程,1999(02):73-76.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%