蠕变或应力松弛被认为是钛合金板材热成形降低回弹的主要机理.目前对热校形阶段中的蠕变与应力松弛的区别及联系尚缺乏深入研究.本文主要进行了钛合金高温短时蠕变及应力松弛实验,利用TEM对实验后的显微组织进行了观察.分别研究了温度、应力及时间对蠕变和应力松弛行为的影响规律,从蠕变率-时间和蠕变-时间角度建立了蠕变与应力松弛之间的联系.研究表明:钛合金在低温低应力下蠕变以原子扩散为主,高温高应力下以位错滑移和攀移为主,而应力松弛在不同温度时均以位错攀移为主要变形机制,基于蠕变数据预测的应力松弛行为与实验结果符合较好.
参考文献
[1] | R.Boyer,G.Welsch,E.W.Collings,Materials Properties Handbook:Titanium Alloys (Ohio,ASM International,1994) |
[2] | W.D.Brewer,R.K.Bird,T.A.Wallace,Titanium alloys and processing for high speed aircraft,Materials Science and Engineering A,243,299(1998) |
[3] | R.R.Boyer,An overview on the use of titanium in the aerospace industry,Materials Science and Engineering A,213,103(1996) |
[4] | E.O.Ezugwu,Z M.Wang,Titanim alloys and their machinabilitya review,Journal of Materials Processing Technology,68,262 (1997) |
[5] | E.L.Odenberger,M.Oldenburg,P.Thilderkvist,T.Stoehr,J.Lechler,M.Merklein,Tool development of Ti-6A1-4v sheet with low temperature superplastic properties,Journal of Material Processing and Technology,211(8),1324(2011) |
[6] | He Yang,Xiaoguang Fan,Zhichao Sun,Lianggang Guo,Mei Zhan,Recent developments in plastic forming technology of titanium alloys,Science China Technological Sciences,54(2),490(201 1) |
[7] | Chunxiang Cui,Baomin Hu,Lichen Zhao,Shuangjin Liu,Titanium alloy production technology,market prospects and industry development,Materials and Design,32,1684(2011) |
[8] | O.H.Charles,Hot sizing titanium and steel parts,Machinery,6,118 (1958) |
[9] | XIONG Zhiqing,LIU Zhaorong,Study of the Hot sizing and high temperature mechanical behavior of titanium sheet,Journal of Nanjing University of Aeronautics & Astronautics,(3),159(1983)(熊志卿,林兆荣,钛板热校形及其高温力学性质的研究,南京航空学院学报,(3),159(1983)) |
[10] | N.K.Sinha,S.Sinha,Stress relaxation at high temperatures and the role of delayed elasticity,Materials Science and Engineering A,393,179(2005) |
[11] | K.C.Ho,J.Lin,T.A.Dean,Modelling of springback in creep forming thick aluminum sheets,International Journal of Plasticity,20,733(2004) |
[12] | G.B.Viswanathan,S.Karthikeyan,R.W.Hayes,M.J.Mills,Creep behaviour of Ti-6Al-2Sn-4Zr-2Mo:Ⅱ.mechanisms of deformation,International Journal of Mechanical Sciences,53,595 (2011) |
[13] | J.Koike,K.Maruyama,Study of primary creep in Ti-6-22-22S alloys,Materials Science and Engineering A,263,155(1999) |
[14] | C.Schuh,D.C.Dunand,An overview of power-law creep in polycrystalline β-titanium,Script Materialia,45,1415(2011) |
[15] | M.J.R.Barboza,C.M.Neto,C.R.M.Silva,Creep mechanisms and physical modeling for Ti-6Al-4V,Materials Science and Engineering A,369,201(2004) |
[16] | Yong Liu,Jingchuan Zhu,Effects of triple heat treatment on stress relaxation resistance of BT20 alloy,Mechanics of Materials,40,792(2008) |
[17] | H.LEE,S.MALL,Stress relaxation behavior of shot-peened Ti6Al-4V under fretting fatigue at elevated temperature,Materials Science and Engineering A,366,412(2004) |
[18] | S.K.Reif,K.J.Amberge,D.A.Woodford,Creep design analysis for a thermoplastic from stress relaxation measurements,Materials and Design,(16),15(1995) |
[19] | H.D.Chandlera,Comparison between steady state creep and stress relaxation in copper,Materials Science and Engineering A,527,6219(2010) |
[20] | GUO Jinquan,XUAN Fuzhen,WANG Zhengdong,TU Shandong,Creep Performance Prediction Method Through Short-term Stress Relaxation Tests,Proceedings of the CSEE,29(1 1),92(2009)(郭进全,轩福贞,王正东,涂善东,基于短时应力松弛试验的蠕变行为预测方法,中国电机工程学报,29(11),92(2009)) |
[21] | WANG Mingwei,WANG Chunyan,YANG Jixin,ZHANG Liwen,ZHAO Jie,Study of high temperature stress relaxation behavior of BT20 alloy,Rare Metal Materials And Engineering,41(3),502 (2012)(王明伟,王春燕,杨继新,张立文,赵杰,BT20钛合金高温应力松弛行为研究,稀有金属材料与工程,41(3),502(2012)) |
[22] | ZHOU Zhaofeng,CHEN Minghe,FAN Ping,WANG Ronghua,LI Feng,LIN Yao,Numerical simulation on hot sizing of titanium alloy TC4,Journal of Nanjing University of Aeronautics &Astronautics,41(5),620(2009)(周兆锋,陈明和,范平,王荣华,李枫,林尧,钛合金TC4热应力校形的数值模拟,南京航空航天大学学报,41(5),620(2009)) |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%