目的 研究脉冲偏压占空比对TiN/TiAlN多层薄膜微观结构和硬度的影响规律.方法 利用脉冲偏压电弧离子镀的方法,改变脉冲偏压占空比,在M2高速钢表面制备5种TiN/TiAlN多层薄膜,对比研究了薄膜的微观结构、元素成分、相结构和硬度的变化规律.结果 TiN/TiAlN多层薄膜表面出现了电弧离子镀制备薄膜的典型生长形貌,随着脉冲偏压占空比的增加,薄膜表面的大颗粒数目明显减少.此外,脉冲偏压占空比的增加还引起多层薄膜中Al/Ti原子比的降低.结论 TiN/TiAlN多层薄膜主要以(111)晶面择优取向生长,此外还含有(311),(222)和(200)晶相结构.5种多层薄膜的纳米硬度均在33GPa以上,当脉冲偏压占空比为20%时,可实现超硬薄膜的制备.
参考文献
[1] | G.P. Zhang;G.J. Gao;X.Q. Wang;G.H. Lv;L. Zhou;H. Chen;H. Pang;S.Z. Yang .Influence of pulsed substrate bias on the structure and properties of Ti-Al-N films deposited by cathodic vacuum arc[J].Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,2012(19):7274-7279. |
[2] | 黄美东,许世鹏,刘野,薛利,潘玉鹏,范喜迎.负偏压对电弧离子镀复合TiAlN薄膜的影响[J].表面技术,2012(06):1-3,6. |
[3] | 曹华伟,张程煜,乔生儒,曹晓雨.物理气相沉积TiAlN涂层的研究进展[J].材料导报,2011(11):25-29. |
[4] | 陈建国;程宇航;游少鑫 等.(Ti,Al)N薄膜的制备及性能[J].表面技术,1998,27(04):15-17. |
[5] | Richard Rachbauer;Jamie J. Gengler;Andrey A. Voevodin .Temperature driven evolution of thermal, electrical, and optical properties of Ti-Al-N coatings[J].Acta materialia,2012(5):2091-2096. |
[6] | Qi, Z.B.;Sun, P.;Zhu, F.P.;Wu, Z.T.;Liu, B.;Wang, Z.C.;Peng, D.L.;Wu, C.H..Relationship between tribological properties and oxidation behavior of Ti_(0.34)Al_(0.66)N coatings at elevated temperature up to 900°C[J].Surface & Coatings Technology,2013:267-272. |
[7] | 彭继华,肖新生,苏东艺,田君.涂层结构对Ti-Al-N涂层氧化行为的影响[J].真空科学与技术学报,2013(03):208-213. |
[8] | 林小东,宋绪丁,傅高升.复合工艺制备TiAlN薄膜及其高温抗氧化性能研究[J].表面技术,2010(06):22-25. |
[9] | 吴化,陈涛,宋力.PVD法制备(Ti,Al)N涂层中残余应力对其质量的影响[J].材料工程,2013(02):60-64,92. |
[10] | R. Ananthakumar;B. Subramanian;Akira Kobayashi .Electrochemical corrosion and materials properties of reactively sputtered TiN/TiAlN multilayer coatings[J].CERAMICS INTERNATIONAL,2012(1):477-485. |
[11] | J.C.Caicedo;G. Cabrera;H.H. Caicedo;C. Amaya;W. Aperador .Nature in corrosion-erosion surface for [TiN/TiAlN]n nanometric multilayers growth on AISI 1045 steel[J].Thin Solid Films: An International Journal on the Science and Technology of Thin and Thick Films,2012(13):4350-4361. |
[12] | Y.H. Zhao;L Hu;G.Q, Lin .Deposition, microstructure and hardness of TiN/(Ti,Al)N multilayer films[J].International Journal of Refractory Metals & Hard Materials,2012(May.):27-32. |
[13] | 李争显,王少鹏,潘晓龙,杜继红,王宝云,严鹏.电弧离子镀沉积TiN/AlN-TiAlN复合膜的耐磨性[J].装备制造技术,2010(02):1-2,10. |
[14] | 王宝云,李争显,严鹏,杜继红,姬寿长.钛合金表面电弧离子镀TiN/TiAlN多层复合涂层的组织及抗氧化性能研究[J].钛工业进展,2008(02):32-36. |
[15] | 侯晏红,李贺军,乔学亮.Ti一Al一N系功能梯度薄膜结合力的实验研究[J].功能材料,2000(Z1):87. |
[16] | 张皓扬,周兰英,田建朝.基体偏压对TiAlN涂层性能的影响[J].表面技术,2006(06):15-16,45. |
[17] | 宋贵宏,李锋,陈立佳,杜昊.铝和镁合金上电弧离子镀(Ti,Al)N梯度涂层的比较[J].表面技术,2008(01):14-16. |
[18] | 王永康;夏立芳 .高速钢表面(Ti,Al)N涂层组织结构的研究[J].表面技术,1992,21(05):208-211. |
[19] | OLBRICH W;FESSMANN J;KAMPSCHULTE G et al.Improved Control of TiN Coating Properties Using Cathodic Arc Evaporation with a Pulsed Bias[J].Surface and Coatings Technology,1991,49(1/2/3):258-262. |
[20] | Wen LS;Huang RF .Some fundamental problems of pulse biased arc ion plating[J].Surface & Coatings Technology,2005(1/3):1-5. |
[21] | BOXMAN R L;GOLDSMITH S .Macroparticle Contamination in Cathodic Arc Coatings:Generation,Transport and Control[J].Surface and Coatings Technology,1992,52(01):39-50. |
[22] | Huang MD.;Lin GQ.;Zhao YH.;Sun C.;Wen LS.;Dong CA. .Macro-particle reduction mechanism in biased arc ion plating of TiN[J].Surface & Coatings Technology,2003(1):109-114. |
[23] | MATFOX D M .Particle Bombardment Effects on Thin-film Deposition:A Review[J].Journal of Vacuum Science and Technology A:Vacuum Surfaces and Films,1989,7(03):1105-1114. |
[24] | S. PALDEY;S.C. DEEVI;T.L. ALFORD .Cathodic arc deposited thin film coatings based on TiAl intermetallics[J].Intermetallics,2004(7/9):985-991. |
[25] | PalDey S.;Deevi SC. .Single layer and multilayer wear resistant coatings of (Ti,Al)N: a review [Review][J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2003(1/2):58-79. |
[26] | Chang-Lin Liang;Guo-An Cheng;Rui-Ting Zheng;Hua-Ping Liu .Fabrication and performance of TiN/TiAlN nanometer modulated coatings[J].Thin Solid Films,2011(2):813-817. |
[27] | TSUTOMU I;HIROSHI S .Phase Formation and Characterization of Hard Coatings in the Ti-Al-N System Prepared by the Cathodic Arc Ion Plating Method[J].THIN SOLID FILMS,1991,195(1/2):99-110. |
[28] | Mendibide C;Steyer P;Fontaine J;Goudeau P .Improvement of the tribological behaviour of PVD nanostratified TiN/CrN coatings - An explanation[J].Surface & Coatings Technology,2006(7):4119-4124. |
[29] | A. Knutsson;M. P. Johansson;L. Karlsson;M. Oden .Thermally enhanced mechanical properties of arc evaporated Ti_(0.34)Al_(0.66)N/TiN multilayer coatings[J].Journal of Applied Physics,2010(4):044312-1-044312-7. |
[30] | Mei FH;Shao N;Wei L;Dong YS;Li GY .Coherent epitaxial growth and superhardness effects of c-TiN/h-TiB2 nanomultilayers[J].Applied physics letters,2005(1):1906-1-1906-3-0. |
[31] | Jianling Yue;Geyang Li .Microstructure and mechanical properties of TiAlN/Si_3N_4 nano-multilayers synthesized by reactive magnetron sputtering[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2009(1/2):710-713. |
[32] | F.J. Espinoza-Beltran;O. Che-Soberanis;L. Garcia-Gonzalez;J. Morales-Hernandez .Effect of the substrate bias potential on crystalline grain size, intrinsic stress and hardness of vacuum arc evaporated TiN/c-Si coatings[J].Thin Solid Films: An International Journal on the Science and Technology of Thin and Thick Films,2003(1/2):170-175. |
[33] | CHU X;BARNETY S A .Model of Superlattice Yield Stress and Hardness Enhancements[J].Journal of Applied Physics,1995,77(09):4403-4411. |
[34] | SHINN M;BARNETT S A .Effect of Superlattice Layer Elastic Moduli on Hardness[J].Applied Physics Letters,1994,64(01):61-63. |
[35] | MIRKARIMI P B;HULTMAN L;BARNETY S A .Enhanced Hardness in Lattice-matched Single-crystal TiN/V0.6 Nb0.4 N Superlattices[J].Applied Physics Letters,1990,57(25):2654-2656. |
[36] | 程东 .Cu/Ni纳米多层膜微观强化机理及微摩擦学特性的分子动力学模拟[D].大连:大连海事大学,2005. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%