无机材料学报, 1999, 14(1): 1-11.
弛豫型铁电体PZNT制备与性能研究的进展
许桂生 , 罗豪 , 齐振一 , 徐海清 {"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"普通金相浸蚀方法观察材料的显微组织虽然简洁快速,但它往往只能显示晶界和相界,并且难以有效地区分多于两相的显微组织.特别是低碳贝氏体复相钢组织比较复杂,普通金相浸蚀方法很难满足需要,运用彩色金相技术和电子背散射(Electron Back Scatter Diffraction,EBSD)技术对低碳贝氏体复相热轧钢板产品的显微组织进行相鉴别的研究鲜见报道,笔者在各相定量分析方面进行了一些尝试和探索,并取得了一系列成果和进展.","authors":[{"authorName":"胡恒法","id":"a016e268-88c2-43ec-aa24-858a38ff414a","originalAuthorName":"胡恒法"},{"authorName":"裴新华","id":"e643cdcc-3f17-4255-a50c-6790931dd442","originalAuthorName":"裴新华"},{"authorName":"穆海玲","id":"77836bfc-ea9d-4458-883f-6f8a46e1361f","originalAuthorName":"穆海玲"}],"doi":"","fpage":"1","id":"851bd927-6bb0-4077-a281-a36a1bc8b8b0","issue":"5","journal":{"abbrevTitle":"WLCS","coverImgSrc":"journal/img/cover/WLCS.jpg","id":"64","issnPpub":"1001-0777","publisherId":"WLCS","title":"物理测试"},"keywords":[{"id":"c2c7d9c5-ae22-4ed9-9da8-a59e49a40a33","keyword":"贝氏体","originalKeyword":"贝氏体"},{"id":"9f4bf168-12a0-4473-8eac-2ced521d6e37","keyword":"复相钢","originalKeyword":"复相钢"},{"id":"de058503-0b68-4c88-8371-90c72ade8425","keyword":"彩色金相","originalKeyword":"彩色金相"},{"id":"95bd962e-a16c-4766-b9d2-9e7a148f6fa3","keyword":"电子背散射","originalKeyword":"电子背散射"},{"id":"7df7f80b-3440-4c77-87d8-b9dafee2e5b9","keyword":"低碳钢","originalKeyword":"低碳钢"}],"language":"zh","publisherId":"wlcs200805001","title":"低碳贝氏体复相钢相鉴别技术","volume":"26","year":"2008"},{"abstractinfo":"在实验室用真空感应炉冶炼复相钢和马氏体钢,锻坯、控轧成3 mm厚的板材后采用不同冷却模式进行控制冷却.研究了成分、冷却工艺对组织与力学性能的影响.结果表明:卷取温度降低,钢的强度上升,伸长率下降,组织由铁素体+珠光体向贝氏体、马氏体转变;低温卷取时钢的强度主要取决于碳含量,硅含量的提高使钢的强度和塑性均有所提高;分段冷却对组织与性能的影响较复杂.通过不同的控制冷却工艺实现了用相同的成分获得不同强度等级要求的汽车用先进高强度钢.","authors":[{"authorName":"张爱文","id":"8774a94c-a3dc-4e64-aa4d-e193f2eda315","originalAuthorName":"张爱文"},{"authorName":"郑磊","id":"dd9b8b31-21cb-422c-905b-1eb755b07b5c","originalAuthorName":"郑磊"}],"doi":"","fpage":"64","id":"fd2a1c5a-a309-444b-b052-5e23389ee2dc","issue":"10","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"85429620-d500-4262-aa31-92d665e6aed4","keyword":"复相钢","originalKeyword":"复相钢"},{"id":"f896b1ab-2656-4c3b-8a87-dfd0ef96e147","keyword":"马氏体钢","originalKeyword":"马氏体钢"},{"id":"b1d85097-20e5-4416-b3db-d73722f2cad3","keyword":"控制轧制","originalKeyword":"控制轧制"},{"id":"a652ac76-6ea1-4c42-99fe-ed468afd6366","keyword":"控制冷却","originalKeyword":"控制冷却"}],"language":"zh","publisherId":"gt200610016","title":"成分及冷却工艺对复相钢、马氏体钢组织与性能的影响","volume":"41","year":"2006"},{"abstractinfo":"阐述了新型Mn-ai-Cr系无碳化物贝氏体/马氏体(CFB/M)复相钢的组织与合金设计思想;研究了复相钢在空冷条件下的组织及其精细结构,并系统地总结了实验钢经不同温度回火后的力学性能.实验结果表明,复相高强钢在具有优良的强韧性能的同时,又具有较高的延迟断裂抗力和抗疲劳破坏能力,其强韧性的提高归于其独特的组织结构:贝氏体碳化物被薄膜状残余奥氏体所取代,大大改善了复相钢的回火稳定性和疲劳性能,稳定的残余奥氏体薄膜作为不可逆氢陷阱,并显著提高了钢的抗氢脆能力.","authors":[{"authorName":"杨福宝","id":"908b397a-212c-4773-ad62-654dde447b07","originalAuthorName":"杨福宝"},{"authorName":"白秉哲","id":"277c4189-b121-4cf2-ac6a-ae31f3cf664b","originalAuthorName":"白秉哲"},{"authorName":"刘东雨","id":"3aa6b8dd-7ec7-4d93-8b09-624e72c3cb54","originalAuthorName":"刘东雨"},{"authorName":"常开地","id":"e3ece2a1-cde6-4fc1-adf2-befa970c0538","originalAuthorName":"常开地"},{"authorName":"韦东远","id":"af55c73a-311c-4e2a-95fc-be951154eb3f","originalAuthorName":"韦东远"},{"authorName":"方鸿生","id":"ca0c7049-b840-4463-bea1-378d789ab5fe","originalAuthorName":"方鸿生"}],"doi":"10.3321/j.issn:0412-1961.2004.03.014","fpage":"296","id":"f00641b5-c471-42f3-8c6c-ed7fb4705640","issue":"3","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"1babf6ae-ccc1-4df9-8289-426018a86941","keyword":"无碳化物贝氏体","originalKeyword":"无碳化物贝氏体"},{"id":"3a52bbc9-672f-4033-907c-bebb3198a094","keyword":"复相钢","originalKeyword":"复相钢"},{"id":"23128c20-cc71-40f3-b240-aced6f217515","keyword":"残余奥氏体","originalKeyword":"残余奥氏体"},{"id":"6d04446e-c9c0-4fa5-8457-f9c1b22ff4a9","keyword":"延迟断裂","originalKeyword":"延迟断裂"},{"id":"db2ea842-9aa0-4c78-9bbe-e4a9af4f4098","keyword":"疲劳性能","originalKeyword":"疲劳性能"}],"language":"zh","publisherId":"jsxb200403014","title":"无碳化物贝氏体/马氏体复相高强度钢的组织与性能","volume":"40","year":"2004"},{"abstractinfo":"针对中碳Si-Mn系贝氏体/马氏体复相钢,比较不同热处理工艺(正火+回火,等温淬火+回火)后的组织和性能,以探索适宜的热处理工艺,并进行摩擦磨损实验.结果表明,在本研究范围内,复相钢最佳的热处理方案及相应的性能为950℃×1h正火+250℃×2.5 h回火,洛氏硬度为51.7 HRC,冲击韧度αK为20.6 J/cm2,抗拉强度为1731.7 MPa;950℃×1 h奥氏体化+320℃×1h等温淬火+250℃×2.5h回火,洛氏硬度为50.8 HRC,冲击韧度αK为20.9 J/cm2,抗拉强度为1508.0 MPa.干摩擦或油润滑条件下,复相钢均有较好的耐磨性能,相比而言,正火+回火的复相钢耐磨性更好.","authors":[{"authorName":"董天顺","id":"789ca884-577a-49e2-83f4-71839e42385d","originalAuthorName":"董天顺"},{"authorName":"李国禄","id":"0bc8661d-2dd9-4897-8331-0b87e468c2d9","originalAuthorName":"李国禄"},{"authorName":"刘金海","id":"e82e92e2-cb8b-4f80-a644-e0b8d373dd79","originalAuthorName":"刘金海"},{"authorName":"郝晓燕","id":"3721797e-750b-48ca-8594-9009754ef45c","originalAuthorName":"郝晓燕"},{"authorName":"张建军","id":"a8cbf228-2f54-4b07-a68e-af2fc938f3fe","originalAuthorName":"张建军"}],"doi":"","fpage":"75","id":"092ff7c7-6714-45b8-86e9-0863b4a1fbc7","issue":"7","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"1ee42311-2e40-449c-aed4-9905a6a533d3","keyword":"贝氏体/马氏体","originalKeyword":"贝氏体/马氏体"},{"id":"81b1cc45-6a53-4c77-9def-7774f188e99b","keyword":"复相钢","originalKeyword":"复相钢"},{"id":"4964e13f-8e44-493b-b160-11032fe80232","keyword":"热处理","originalKeyword":"热处理"},{"id":"6942c9bf-4d78-40f1-b625-34fd11869382","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"ca36243e-9b78-4a3f-ab05-14e6adf6b349","keyword":"耐磨性","originalKeyword":"耐磨性"}],"language":"zh","publisherId":"jsrclxb201407014","title":"中碳Si-Mn系贝氏体/马氏体复相耐磨钢热处理工艺及性能","volume":"35","year":"2014"},{"abstractinfo":"通过Gleeble-1500热力模拟实验机对仿晶界型铁素体/粒状贝氏体复相钢进行了Ar3以上不同温度、不同形变量的平面应变压缩实验.SEM和TEM观察表明,奥氏体形变不仅细化仿晶界型铁素体,而且促进先共析铁素体在原奥氏体晶内形核,从而有利于细化粒状贝氏体晶团及其内部的铁素体片条和MA岛.给出的组织变化模型可阐述形变对粒状贝氏体精细结构的影响.经过780℃下30%形变,即使在形变后空冷的条件下也获得了平均长度小于5 μm、平均宽度小于2.5 μm的仿晶界型铁素体晶粒、平均粒径小于3μm的晶内铁素体.与未经过形变的试样相比,CVN常温冲击韧性值从未形变的43 J提高到108 J,Vickers硬度从242提高到312,为工业生产工艺的改进提供了重要根据.","authors":[{"authorName":"王建平","id":"fd4f9108-3026-4d7e-a28c-09beb65ed783","originalAuthorName":"王建平"},{"authorName":"杨志刚","id":"66f2c699-db5c-4632-83ae-5e7cfa39877f","originalAuthorName":"杨志刚"},{"authorName":"白秉哲","id":"a0b4b5c1-f4b8-4f4f-ba9f-2ecb90be952b","originalAuthorName":"白秉哲"},{"authorName":"方鸿生","id":"33e5a8ac-610b-46c3-8b91-44227f24ecd4","originalAuthorName":"方鸿生"},{"authorName":"冯勇","id":"c1972817-d0bc-47f6-90e3-4f0b97725cc8","originalAuthorName":"冯勇"},{"authorName":"徐洪庆","id":"3c85b88f-9464-4e29-9ec6-ce5aebc80045","originalAuthorName":"徐洪庆"}],"doi":"10.3321/j.issn:0412-1961.2004.03.008","fpage":"263","id":"dd054577-94f1-4784-805f-8131ad747d02","issue":"3","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"9e11267b-1f0d-47ce-846c-6cfd465f327e","keyword":"晶粒细化","originalKeyword":"晶粒细化"},{"id":"620283a4-2bba-4b35-961e-cf60c33080dc","keyword":"奥氏体形变","originalKeyword":"奥氏体形变"},{"id":"73403880-0f31-4b2e-adc5-6c6a08e3967d","keyword":"粒状贝氏体","originalKeyword":"粒状贝氏体"},{"id":"32faab60-ac3e-4b68-83a5-1c48317a7e8c","keyword":"复相钢","originalKeyword":"复相钢"},{"id":"81c68303-86cc-4754-9145-459fcf3a7f86","keyword":"强韧性能","originalKeyword":"强韧性能"}],"language":"zh","publisherId":"jsxb200403008","title":"奥氏体形变对仿晶界型铁素体/粒状贝氏体复相钢组织和强韧性能的影响","volume":"40","year":"2004"},{"abstractinfo":"本文研究铁素体-马氏体复相钢中铁素体含量对裂纹萌生、扩展和裂纹尖端塑性变形的影响。在24.2—41.5%的铁素体含量范围内,以33.8%含量的复相钢裂纹萌生期N_0较长、门槛值ΔK_(th)高、并有低的扩展速率和较高的闭合应力强度因子K_(Cl)。 三种铁素体含量复相钢的dα/dN-ΔK_(eff)一致的事实,表明裂纹闭合对低速扩展的重要作用,且闭合程度(K_(Cl)/K_(max))随裂纹尖端ΔK的降低而提高,在ΔK_(th)时达到最大。铁素体含量为33.8%的K_(Cl)/K_(max)值最高达0.7。","authors":[{"authorName":"邓蓉英","id":"0be5867c-68b2-439a-9f2c-72afbdde44ee","originalAuthorName":"邓蓉英"},{"authorName":"叶智军","id":"565597f9-8c40-43fd-8c38-3ed853b50499","originalAuthorName":"叶智军"},{"authorName":"刘淑华","id":"46607d8e-3095-438e-9461-4954396c2edb","originalAuthorName":"刘淑华"},{"authorName":"邹定强","id":"440478f5-1380-41ed-9973-6ad704c66713","originalAuthorName":"邹定强"}],"categoryName":"|","doi":"","fpage":"50","id":"414cb157-9ad0-4d48-b372-28f0d6305228","issue":"3","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"8286dacb-de9a-4b42-82b4-7b9e9cf15086","keyword":"复相钢","originalKeyword":"复相钢"},{"id":"23180924-2813-42ea-aa53-80a80d8bc7cc","keyword":"fatigue crack","originalKeyword":"fatigue crack"},{"id":"9ddc87e0-0f3c-471f-9e97-966826014c34","keyword":"closure effect","originalKeyword":"closure effect"}],"language":"zh","publisherId":"0412-1961_1990_3_24","title":"铁素体-马氏体复相钢疲劳裂纹扩展和闭合效应","volume":"26","year":"1990"},{"abstractinfo":"利用液淬带温等温淬火工艺对中碳低合金钢进行热处理,研究了奥氏体化温度和时间、出液温度、等温温度和时间对其组织和性能的影响,对工艺进行了优化.结果表明:试验条件下理想的工艺参数是奥氏体化温度为840 ℃,保温时间60 min,出液温度为238 ℃,等温温度为300 ℃,等温时间60 min;在此工艺下淬火后试验钢的基体组织为下贝氏体+马氏体,硬度为50 HRC,冲击韧度为26 J·cm-2,磨损量18 mg.","authors":[{"authorName":"王荣","id":"d10eff7e-259e-44cc-b0b0-477cf0e0ac21","originalAuthorName":"王荣"},{"authorName":"高浩","id":"788ef08a-fa35-4925-a3bb-f035de8a7cbf","originalAuthorName":"高浩"},{"authorName":"魏德强","id":"66343f18-79e4-4179-83b2-e188b4f7c9f3","originalAuthorName":"魏德强"}],"doi":"10.11973/jxgccl201706009","fpage":"34","id":"c7dd14fb-76e1-429b-8651-14692dda1e2c","issue":"6","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"3f6ac2c1-7d3f-4832-b0b9-cd0e6eff8c11","keyword":"等温淬火","originalKeyword":"等温淬火"},{"id":"d583f79e-fac1-4532-935d-7d497faf9864","keyword":"复相钢","originalKeyword":"复相钢"},{"id":"726b297f-f5e8-4189-8860-b606fa399915","keyword":"显微组织","originalKeyword":"显微组织"},{"id":"c9f610b7-2bf4-4c5b-be29-0e205d9f7f80","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"jxgccl201706009","title":"中碳低合金钢液淬带温等温淬火工艺的优化","volume":"41","year":"2017"},{"abstractinfo":"普通金相浸蚀方法观察材料的显微组织虽然简洁快速,但它往往只能显示晶界和相界,并且难以有效地区分多于两相的显微组织。特别是低碳贝氏体复相钢组织比较复杂,普通金相浸蚀方法很难满足需要,运用彩色金相技术和电子背散射(Electron Back Scatter Diffraction, EBSD)技术对低碳贝氏体复相热轧钢板产品的显微组织进行相鉴别的研究鲜见报道,笔者在各相定量分析方面进行了一些尝试和探索,并取得了一系列成果和进展。","authors":[{"authorName":"胡恒法","id":"cd7c05ad-b0a8-4566-bdd9-076971d716d9","originalAuthorName":"胡恒法"},{"authorName":"裴新华","id":"cf5ee99a-33c3-4a7d-aeb6-727ad680fcd6","originalAuthorName":"裴新华"},{"authorName":"穆海玲","id":"e9a84dca-a098-4e70-a289-e52749f0d496","originalAuthorName":"穆海玲"}],"categoryName":"|","doi":"","fpage":"1","id":"18d64bd7-e84c-4fff-aad6-40de04778daa","issue":"5","journal":{"abbrevTitle":"WLCS","coverImgSrc":"journal/img/cover/WLCS.jpg","id":"64","issnPpub":"1001-0777","publisherId":"WLCS","title":"物理测试"},"keywords":[{"id":"886e6434-4779-4394-8a15-e6f07f05650f","keyword":"贝氏体","originalKeyword":"贝氏体"},{"id":"cc1e175a-a0e6-4c5b-ab74-8d6f1fc69fa1","keyword":"dual phase steel","originalKeyword":"dual phase steel"},{"id":"e3d7bcff-b779-4f52-894a-9a82eaf7a015","keyword":"color metallography","originalKeyword":"color metallography"},{"id":"f66b6b50-1c5a-4724-9bce-7487bb4ecc99","keyword":"EBSD","originalKeyword":"EBSD"},{"id":"0f15ebe8-9943-491f-a367-eb25638a0ca5","keyword":"low carbon steel","originalKeyword":"low carbon steel"}],"language":"zh","publisherId":"1001-0777_2008_5_16","title":"低碳贝氏体复相钢相鉴别技术","volume":"26","year":"2008"},{"abstractinfo":"在实验室用真空感应炉冶炼复相钢和马氏体钢,锻坯、控轧成3 mm厚的板材后采用不同冷却模式进行控制冷却。研究了成分、冷却工艺对组织与力学性能的影响。结果表明:卷取温度降低,钢的强度上升,伸长率下降,组织由铁素体+珠光体向贝氏体、马氏体转变;低温卷取时钢的强度主要取决于碳含量,硅含量的提高使钢的强度和塑性均有所提高;分段冷却对组织与性能的影响较复杂。通过不同的控制冷却工艺实现了用相同的成分获得不同强度等级要求的汽车用先进高强度钢。","authors":[{"authorName":"张爱文","id":"dbcf56df-9126-4eee-b3bb-c0de79b840d7","originalAuthorName":"张爱文"},{"authorName":"郑磊","id":"6fc1750a-bb0e-4cf2-b2f3-3aee80689f00","originalAuthorName":"郑磊"}],"categoryName":"|","doi":"","fpage":"64","id":"8bab0c48-61ea-424a-bd13-c36d88afb9f3","issue":"10","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"e6ca25f2-105d-426e-98e4-9e8442cb23fa","keyword":"复相钢;马氏体钢;控制轧制;控制冷却","originalKeyword":"复相钢;马氏体钢;控制轧制;控制冷却"}],"language":"zh","publisherId":"0449-749X_2006_10_13","title":"成分及冷却工艺对复相钢、马氏体钢组织与性能的影响","volume":"41","year":"2006"},{"abstractinfo":"用紧凑拉伸试样测定了65Cr5Mo3W2VSiTi(LM2)钢不同贝氏体量和不同回火温度的M/B复相组织的疲劳裂纹扩展速率,根据试验数据估算了各工艺的疲劳门槛值。结果表明,LM2钢M/B复相组织的疲劳裂纹扩展属非连续扩展机制,疲劳裂纹微观扩展速率的计算值和宏观扩展速率的实测值相近","authors":[{"authorName":"田保红","id":"a07d8967-4080-4c5d-984a-dc4a88930f10","originalAuthorName":"田保红"},{"authorName":"郑世安","id":"85472642-3bdc-41e4-b166-c6093df8a7f2","originalAuthorName":"郑世安"},{"authorName":"吴磊","id":"10cd974d-cefe-4835-a5ce-e2869ef89e81","originalAuthorName":"吴磊"}],"categoryName":"|","doi":"","fpage":"46","id":"dc73c3f9-966d-4a01-ae33-0e107b726493","issue":"3","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"3f9c9913-225f-4071-b745-70c4af6cc29f","keyword":"M/B复相组织","originalKeyword":"M/B复相组织"},{"id":"bc789068-1eff-473a-af5c-8de61a29330e","keyword":"fatigue crack propagation rate","originalKeyword":"fatigue crack propagation rate"},{"id":"56a1fd17-862f-43cc-bb8b-38197622aa4d","keyword":"threshold value","originalKeyword":"threshold value"},{"id":"ffa532b5-a830-4f3e-9ab0-3178f6eda1de","keyword":"steel 65Cr5Mo3W2VSiTi","originalKeyword":"steel 65Cr5Mo3W2VSiTi"}],"language":"zh","publisherId":"0412-1961_1993_3_1","title":"高碳Cr—Mo—W钢M/B复相组织疲劳行为研究","volume":"29","year":"1993"}],"totalpage":6060,"totalrecord":60599}