以离子液体氯化-1-十二烷基甲基咪唑(C12 mimCl)为表面活性剂,甲基丙烯酸甲酯(MMA)和丙烯酰胺(AM)混合物为油相构筑的反相微乳液合成AgCl纳米粒子。通过微乳液聚合制备AgCl/poly(MMA—co—AM)杂化膜,用于苯-环己烷混合物的渗透汽化分离。利用紫外-可见吸收光谱(UV—Vis)和透射电镜(TEM)分析AgCl纳米粒子的形貌及结构,利用XRD和SEM分析了杂化膜中AgCl粒子的形貌及结构,通过杂化膜的苯-环已烷混合物(质量分数50%,30℃)的渗透汽化实验分析了杂化膜的分离性能。结果表明:纳米AgCl粒子的平均粒径和粒子数随微乳液中AgNO3浓度(CAgNO3)的增大明显增加;增加微乳液中C122mimCl浓度(CC12mimCl),有利于形成数量较多、平均粒径较小的纳米AgCl粒子;AgCl/poly(MMA—co—AM)杂化膜中AgCl粒子粒径较小,且均匀分散于poly(MMA—co—AM)基材中;随着CAgNO3的增加,杂化膜的渗透通量明显增大,分离因子先增大后减小;而随CC12mimCl的增加,杂化膜的分离因子持续增大,渗透通量表现出先增大后减小的趋势;杂化膜的分离因子最高可达5.0,渗透通量约为490g·m^-2·h^-1,表现出较好的分离性能。
Nanoparticles of AgCl were synthesized in W/O reverse microemulsion using ionic liquid 1 - dodecyl - 3 -methyl imidazoium chloride(Cl2mimCl) as surfactant, methyl methacrylate(MMA)-acrylamide(AM) mixture as oil phase. And then AgCl/poly(MMA-co-AM) hybrid membranes were prepared by microemulsion polymerization for separation of benzenecyclohexane (mass fraction 50%) mixture by pervaporation at 30 ℃. The effect of concentration of surfactant (CC12mimCl) and salt (CAgNO3 ) on formation and morphology of AgCl nanoparticles were studied by ultravioletvisible spectrum and transmission electron microscopy(TEM). The structures of hybrid membranes were characterized by XRD and SEM. The pervaporation performance of the hybrid membranes was studied. The results show that the number and average size of AgCl nanoparticles increase significantly with the increase of CAgNO3 , and the number of AgCl nanoparticles increases but the average sizes decreases with the increase of CC12mimCl. AgCl nanoparticles maintain well dispersion with small size in AgClI/poly(MMA-co-AM) hybrid membranes. With the increase of CAgNO3 , the flux of the hybrid membranes increases significantly, and the separation factor of hybrid membranes for benzene - cyclohexane mixtures increases first and then decreases. When CC12mimCl rising, the separation factor increases continuously, and the flux increases first and then decreases. The maximum separation factor of hybrid membrane for benzene - cyclohexane mixtures reaches 5.0 and the flux of the hybrid membrane is 490g·m^-2·h^-1, which demonstrates good separation property.
参考文献
[1] | Deng L Y, Kim T J,Hagg M B. Facilitated transport of CO2in novel PVAm/PVA blend membrane [J]. J Membr Sci> 2009,340: 154-163. |
[2] | Tang X Y,Weisbrod N. Colloid-facilitated transport of lead innatural 698 discrete fractures [J], Environmental Pollution,2009,157: 2266-2274. |
[3] | Burns R L,Koros W J. Defining the challenges for C3H6/C3H8 separation using polymeric membranes [J]. J MembrSci, 2003,211: 299-309. |
[4] | Kim J Hf Min B Won J, et al. Effect of the polymermatrix on the formation of silver nanoparticles in polymer -silver salt complex membranes [J]. J Polym Sci Part B: PolymPhys, 2006, 44(8). 1168-1178. |
[5] | Shen J N,Zheng X C. Ruan H M, et al. Preparationinorganic - organic hybrid membranes and its sorptionperformance of cyclohexane/cyclohexene [J]. J Membr Sci,2007,304: 118-124. |
[6] | Koh J H, Kang S W, Park J T, et al. Synthesis of silverhalide nanocomposites templated by amphiphilic graftcopolymer and their use as olefin carrier for facilitatedtransport membranes [J]. J Membr Sci, 2009, 339 ; 49-56. |
[7] | 吴礼光,项雯,杜春慧.F127反相微乳液中纳米AgCl粒子的可控合成和AgCl/F127 - PMMA有机/无机杂化膜的研究[J].无机化学学报,2011, 27(1): 61-65. |
[8] | Teramoto M, Takeuchi N, Maki T,et al. Ethylene/ethaneseparation by facilitated transport membrane accompanied bypermeation of aqueous silver nitrate solution [J]. Separationand Purification Technology, 2002,28: 117-124. |
[9] | Mun S H, Kang S W, Cho J S. et al. Enhanced olefin carrieractivity of clean surface silver nanoparticles for facilitatedtransport membranes [J]. J Membr Sci, 2009,332: 1-5. |
[10] | Kang S W, Hong J, Park J H, et al. Nanocompositemembranes containing positively polarized gold nanoparticlesfor facilitated olefin transport [J], J Membr Sci, 2008,32:90-93. |
[11] | Joo S H, Kim J H, Kang S W, et al. Propylene sorption andcoordinative interactions for poly (N - vinyl pyrrolidone - co -vinyl acetate)/silver salt complex membranes [J]. J Polym SciPart B: Polym Phys, 2007,45: 2263-2269. |
[12] | Jose G T,Elisa V, Elvira G. Synthesis and characterization ofCo@Ag core - shell nanoparticles [J]. J Nanopart Res, 2010,12: 2189-2199. |
[13] | 江增,吴礼光,周志军.反相微乳液中AgCl纳米粒子的可控合成与AgCl/GMA - MMA - AMPS共聚物有机-无机杂化膜的研究[J].高等学校化学学报,2011,32(1): 10-15. |
[14] | Margarita S D,Magali B C S. A novel approach to metal andmetal oxide nanoparticle synthesis: The oil - in - watermicroemulsion reaction method [J]. J Nanopart Res, 2009,11: 1823-1829. |
[15] | 张锁江,刘晓敏,姚晓倩,等.离子液体的前沿、进展及应用[J].中国科学:化学,2009,39: 1134-1144. |
[16] | Husein M M, Rodil E, Vera J H. Preparation of AgBrnanoparticles in microemulsions via reaction of AgNO3 withCTAB counterion [J]. J Nanopart Res, 2007,9 : 787-796. |
[17] | Chen Z Z,Yan F,Qiu J M,et al. Sustainable polymerizationsin recoverable microemulsions [J]. Langmuir, 2010,26:3803-3806. |
[18] | Lu J, Yan F,Texter J. Advanced applications of ionic liquidsin polymer science [J]. Prog Polym Sci, 2009, 34: 431-448. |
[19] | Rabe C,Koetz J. CTAB - based microemulsions with ionicliquids [ J ]. Colloids and Surfaces A: Physicochem EngAspects, 2010, 354(1/2/3): 261-267. |
[20] | Zhang W Z,Qiao X L, Chen J G. Synthesis of nanosilvercolloidal particles in water/oil microemulsion [J]. Colloids andSurfaces A: Physicochem Eng Aspects, 2007,299: 22-28. |
[21] | Yan F,Texter J. Surfactant ionic liquid-based microemulsionsfor polymerization [J]. Chem Commun, 2006,25: 2696-2700. |
[22] | 孙磊,刘爱心,黄红莹,等.水溶性银纳米颗粒的制备及抗菌性能[J].物理化学学报,2011,27(3): 722-728. |
[23] | Garcia-Torres J,Valles E, Gomez E. Synthesis andcharacterization of Co@ Ag core - shell nanoparticles [J]. JNanopart Res, 2010, 12(6): 2189-2199. |
[24] | 叶震,刘丽,陈勇,等.膜法烯烃/烷烃气体分离的研究进展[J].膜科学与技术,2003,23(3): 42-47. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%