欢迎登录材料期刊网

材料期刊网

高级检索

以充分挖掘材料潜力提高中厚板质量为目标,开展了普碳钢中厚板表层组织超细化轧制工艺研究.单向压缩热模拟试验结果表明,在适当条件下,化学成分为w(C)0.16%、w(Si)0.19%、w(Mn)0.56%的普碳钢,可发生形变诱导奥氏体-铁素体相变并获得超细晶粒铁素体.实验室轧制9 mm钢板的铁素体晶粒度达到11级(约7μm),与热模拟试验的结果相一致,屈服强度达到350 MPa.在首钢3 500 mm轧机上,采用化学成分为w(C)0.13%~0.16%、w(Si)0.20%~0.25%、w(Mn)0.5%~0.7%、w(P)0.01%~0.02%、w(S)0.005%~0.010%的连铸坯进行工业试制.28 mm厚钢板的表层铁素体晶粒度达到12级,屈服强度达到310~321 MPa,抗拉强度达到440~450 MPa,同时保持34%左右的伸长率.

参考文献

[1] Hurley PJ;Muddle BC;Hodgson PD .Analysis and characterisation of ultra-fine ferrite produced during a new steel strip rolling process[J].Scripta materialia,1999(4):433-438.
[2] 杨王玥,齐俊杰,孙祖庆,杨平.低碳钢形变强化相变的特征[J].金属学报,2004(02):135-140.
[3] 翁宇庆.超细晶钢-钢的组织细化理论与控制技术[M].北京:冶金工业出版社,2003
[4] Hidesato MABUCHI;Toshiei HASEGAWA;Tadashi ISHIKAWA .Metallurgical Features of Steel Plates with Ultra Fine Grains inSurface Layers and their Formation Mechanism[J].ISIJ International,1999(5):477-485.
[5] Palmiere E.J.;Garcia C.I. .The Influence of Niobium Supersaturation in Austenite on the Static Recrystallization Behavior of Low Carbon Microalloyed Steels[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,1996(4):951-960.
[6] Kwon Deardo A J .Interactions Between Recrystallization and Precipitation in Hot-Deformed Microalloyed Steels[J].Acta Materialia,1991,39:529.
[7] 范建文,易敏,谢瑞萍,胡晓红,陈明跃,赵胜国.表层细晶化Q235中厚板轧制工艺的研究[J].钢铁,2003(11):48-51.
[8] Smith Y E;Siebert C A .Continuous Cooling Transformation Kinetics of Thermomechanically Worked Low Carbon Austenite[J].Metallurgical and Materials Transactions,1971,2:1711-1725.
[9] 科恩M;李述创;向德渊.钢的微合金化及控制轧制[M].北京:冶金工业出版社,1984
[10] 田村今男;王国栋;刘相华.高强度低合金钢的控制轧制和控制冷却[M].北京:冶金工业出版社,1989
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%