欢迎登录材料期刊网

材料期刊网

高级检索

使用多元醇还原法制备了均匀分散的钯纳米颗粒. 将钯纳米颗粒负载于板式、鱼骨式和管式纳米碳纤维,得到稳定、可重复使用的非均相催化剂. 实验结果表明,钯纳米胶粒同载体之间的电位差对钯在载体上的负载量、粒子大小以及Heck反应中钯的溶失量有很大的影响. 在制备过程中,增加钯纳米胶粒同纳米碳纤维表面的电位差能够大大降低钯在Heck反应中的流失. 催化剂的反应活性随钯粒子的增大而降低.

Well-dispersed palladium nanoparticles were synthesized by means of polyol reduction method. In order to prepare stable and reusable heterogeneous catalysts, palladium nanoparticles were supported on platlet carbon nanofiber (pCNF), fishbone carbon nanofibers (fCNF), and tubular carbon nanofibers (tCNF). It was found that the Pd loading and the particles size as well as the amount of Pd leaching during the Heck reaction were strongly related to the potential difference between the CNF surfaces and the palladium colloids. Pd leaching in the Heck reaction can be significantly suppressed by increasing potential difference between the CNF surfaces and the palladium colloids during catalyst preparation. The Pd activity decreased exponentially with the Pd particle size.

参考文献

[1] Bond G C;Thompson D T .[J].Catalysis Review:Science and Engineering,1999,41(3-4):319.
[2] Astruc D;Lu F;Aranzaes J R .[J].Angewandte Chemie International Edition,2005,44(48):7852.
[3] Haruta M .[J].Catalysis Today,1997,36(01):153.
[4] Campbell C T .[J].Science,2004,306(5694):234.
[5] Valden M;Lai X;Goodman D W .[J].Science,1998,281(5383):1647.
[6] Yan W F;Mahurin S M;Pan Z W;Overbury S H Dai S .[J].Journal of the American Chemical Society,2005,127(30):10480.
[7] Bore M T;Pham H N;Ward T L;Datye A K.[J].Chemical Communications,2004(22):2620.
[8] Zanella R;Sandoval A;Santiago P;Basiuk V A Saniger J M .[J].Journal of Physical Chemistry B,2006,110(17):8559.
[9] Zheng N F;Stucky G D .[J].Journal of the American Chemical Society,2006,128(44):14278.
[10] Somorjai G A;Tao F;Park J Y .[J].Topics in Catalysis,2008,47(1-2):1.
[11] Comotti M;Li WC;Spliethoff B;Schuth F .Support effect in high activity gold catalysts for CO oxidation[J].Journal of the American Chemical Society,2006(3):917-924.
[12] Okumura M.;Iwamoto M.;Haruta M.;Tsubota S. .Chemical vapor deposition of gold nanoparticles on MCM-41 and their catalytic activities for the low-temperature oxidation of CO and of H-2[J].Chemistry Letters,1998(4):315-316.
[13] Ramos ALD;Alves PD;Aranda DAG;Schmal M .Characterization of carbon supported palladium catalysts: inference of electronic and particle size effects using reaction probes[J].Applied Catalysis, A. General: An International Journal Devoted to Catalytic Science and Its Applications,2004(1/2):71-81.
[14] Heck R F;Jr Nolley J P .[J].Journal of Organic Chemistry,1972,37(14):2320.
[15] Beletskaya I P;Cheprakov A V .[J].Chemical Reviews,2000,100(08):3009.
[16] Djakovitch L;Kohler K;de Vries J G.Nanoparticles and Catalysis[M].Weinheim:Wiley-VCH,2007:303.
[17] Serp P;Corrias M;Kalck P .[J].Applied Catalysis A:General,2003,253:337.
[18] Kvande I;Briskeby S T;Tsypkin M;Rnning M Hammer N Sunde S Tunold R Chen D .[J].Topics in Catalysis,2007,45(1-4):81.
[19] Sepúlveda-Escribano A;Coloma F;Rodriguez-Reinoso F .[J].Applied Catalysis A:General,1998,173(02):247.
[20] Figueiredo J L;Pereira M F R;Freitas M M A;Orfao J J M .[J].Carbon,1999,37(09):1379.
[21] Fraga M A;Jordao E;Mendes M J;Freitas M M A Faria J L Figueiredo J L .[J].Journal of Catalysis,2002,209(02):355.
[22] Van Dam H E;Van Bekkum H .[J].Journal of Catalysis,1991,131(02):335.
[23] Kvande I;φye G;Hammer N;Rnning M Raaen S Holmen A Sjoblom J Chen D .[J].Carbon,2008,46(05):759.
[24] Zhou J H;Sui Z J;Zhu J;Li P Chen D Dai Y C Yuan W K .[J].CARBON,2007,45(04):785.
[25] Zhou J H;Sui Z J;Li P;Chen D Dai Y C Yuan W K .[J].Carbon,2006,44(15):3255.
[26] Vinke P;van der Eijk M;Verbree M;Voskamp A F van Bekkum H .[J].CARBON,1994,32(04):675.
[27] Solar J M;Leon y Leon C A;Osseo-Asare K;Radovic L R .[J].Carbon,1990,28(2-3):369.
[28] Li Y.;Boone E.;El-Sayed MA. .Size effects of PVP-Pd nanoparticles on the catalytic Suzuki reactions in aqueous solution[J].Langmuir: The ACS Journal of Surfaces and Colloids,2002(12):4921-4925.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%