欢迎登录材料期刊网

材料期刊网

高级检索

新一代奥氏体耐热钢在氧化过程中自发形成连续、稳定、致密的氧化铝层,与传统的在金属表面形成Cr2O3保护层的不锈钢相比,具有更优异的高温抗氧化性能和良好的抗蠕变能力。详细地分析了新型抗高温氧化奥氏体耐热钢的抗氧化机理,并且探讨了一些合金元素对新型奥氏体耐热钢在高温含10%水蒸气的气氛中抗氧化性能的影响。指出新一代奥氏体耐热钢在氧化过程中形成稳定的纳米级沉淀相NbC,以及在高温时形成的稳定Fe2Nh和NiAl沉淀相,有力地改善了其抗蠕变性能和高温力学性能。最后展望了这类以Al2O3为抗氧化层的新型奥氏体耐热钢的应用前景。

This paper introduces a new class of high-temperature oxidation-resistant austenitic heat-resistant steels which offer a continuous, stable, spontaneous dense layer of alumina with superior high-temperature oxidation resistance and creep resistance to conventional chromia( Cr2O3 )-forming stainless steels. Detailed analyses of the oxidation mechanisms and alloying effects on the oxidation behavior of these newly developed alumina-forming steels at high temperatures in air with 10% water vapor were presented. It was also found that the creep resistance and high-temperature mechanical properties for these heat-resistant austenitic steels were improved due to precipitations of stable nanosized NbC , Fe2Nb and NiAl precipitates at elevated temperatures. The perspective of utilizing these novel alumina-forming austenitic stainless steels as engineering components is analyzed and discussed.

参考文献

[1] 孟繁茂;付俊岩.Modern ContainsNiobium Stainless Steel(现代含铌不锈钢)[M].Beijing:Metal-lurgieal Industry Press,2004
[2] Sourmail T. .Precipitation in creep resistant austenitic stainless steels [Review][J].Materials Science and Technology: MST: A publication of the Institute of Metals,2001(1):1-14.
[3] Tan Eike M;Abe F;Sawada K .Creep-Strengthening of Steel at High Temperatures Using Nano-Sized Carbonitride Dispersions[J].Nature,2003,424(6 946):294-296.
[4] Yamamoto Y;Brady MP;Lu ZP;Maziasz PJ;Liu CT;Pint BA;More KL;Meyer HM;Payzant EA .Creep-resistant, Al2O3-forming austenitic stainless steels.[J].Science,2007(5823):433-436.
[5] Elizabeth J. Opila .Volatility of Common Protective Oxides in High-Temperature Water Vapor: Current Understanding and Unanswered Questions[J].Materials Science Forum,2004(Pt.2):765-774.
[6] B. A. Pint;R. Peraldi;P. J. Maziasz .The Use of Model Alloys to Develop Corrosion-Resistant Stainless Steels[J].Materials Science Forum,2004(Pt.2):815-822.
[7] Brady M P;Yamamoto Y;Lu Zhaoping et al.Alumina-Forming Austenitics:a New Class of Heat-Resistant Stainless Steels[J].Stainless Steel World,2008,3:23-29.
[8] M.P.Brady;B.Gleeson .Alloy design strategies for promoting protective oxide- scale formation[J].JOM,2000(1):16-21.
[9] Ramakrishnan V;Mcgurty J A;Jayarman N .Oxidation of High- Aluminum Austenitic Stainless Steels[J].Oxidation of Metals,1988,32:185-200.
[10] Satyanarayana D;Malakondaiah G;Sarma D .Steady State Creep Behaviour of NiA1 Hardened Austenitic Steel[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2002,323(122):119-128.
[11] Fujioka T;Kinugasa M;Iizumi S et al.Heat Resistant Austenitic Stainless Steel[P].US,3 989 514,1976-11-02.
[12] Mcgurtyj A .Austeniticiron Alloys[P].US,4 086 085,1978-04-25.
[13] Pivin J C .Oxidation Mechanism of Fe-Ni-20-25Cr-5A1 Alloys-In-fluence of Small Amounts of Yttrium on Oxidation Kinetics and Oxide Adherence[J].Corrosion Science,1980,20(03):351-373.
[14] Xiangqi Xu;Xiaofeng Zhang;Guoliang Chen;Zhaoping Lu .Improvement of high-temperature oxidation resistance and strength in alumina-forming austenitic stainless steels[J].Materials Letters,2011(21/22):3285-3288.
[15] M.P. Brady;Y. Yamamoto;M.L. Santella .Effects of minor alloy additions and oxidation temperature on protective alumina scale formation in creep-resistant austenitic stainless steels[J].Scripta materialia,2007(12):1117-1120.
[16] Y. YAMAMOTO;M.P. BRADY;Z.P. LU .Alumina-Forming Austenitic Stainless Steels Strengthened by Laves Phase and MC Carbide Precipitates[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,2007(11):2737-2746.
[17] Yamamoto Y;Takeyama M;Lu Z P et al.Alloying Effects on Creep and Oxidation Resistance of Austenitic Stainless Steel Al- loys Employing Intermetallic Precipitates[J].Intermetallics,2005,16:453-462.
[18] M. P. Brady;Y. Yamamoto;M. L. Santella .Composition, Microstructure, and Water Vapor Effects on Internal/External Oxidation of Alumina-Forming Austenitic Stainless Steels[J].Oxidation of Metals,2009(5/6):311-333.
[19] Brady M P;Unocic K A;Lance M J.Increasing the Upper Temperature Oxidation Limit of Alumina Forming Austenitic Stainless Steel in Air with Water Vapor[J].Oxidation of Met- als,2011
[20] Xu Xiangqi;Zhang Xiaofeng;Lu Zhaoplng.Si Effect on Oxide Scales Formed of a Alumina-Forming Austenitic Alloys in Air with 10% H20[M].
[21] Xu Xiangqi;Zhang Xiaofeng;Lu Zhaoping.Manganese Effects on the Oxidation Resistance of the Alumina-Forming Austenitic Steel at 800 °C and 900 °C[M].
[22] M.P. Brack;V. Yamamoto;M.L. Sanlella .The Development of Alumina-Forming Austenitic Stainless Steels for High-Temperature Structural Use[J].JOM,2008(7):12-18.
[23] Yamamoto Y;Santella M L;Brady M P et al.Effect of Alloy Additions on Phase Equilibria and Creep Resistance of Alumina- Forming Austenitic Stainless Steels[J].Metalhtrgical and Mate- rials Transactions A,2009,40A:1868-1880.
[24] Y. Yamamoto;M.L. Santella;C.T. Liu;N.D. Evans;P.J. Maziasz;M.P. Brady .Evaluation of Mn substitution for Ni in alumina-forming austeniticstainless steels[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2009(1/2):176-185.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%