欢迎登录材料期刊网

材料期刊网

高级检索

综述了国内外近年来对纳米结构金属位错的研究,包括位错的基本特征、研究方法以及定量分析.由于晶粒尺寸的减小,全位错的形成和运动变得困难甚至不可能,纳米结构金属更容易生成不全位错.在高分辨TEM图像观察实验中发现了大量孪晶或层错,也证实了不全位错的存在.着重讨论了晶界发射不全位错的形核、增殖以及在塑性变形过程中所起的作用.研究了纳米结构金属中的位错动力学,采用分子动力学模拟和高分辨透射电镜方法从不同层面上揭示了位错的形核、增殖、运动以及相互作用等过程.最后简单介绍了位错柏氏矢量以及密度的相关定量分析,其相关参数的表征对进一步弄清纳米结构金属的塑性变形机制具有重要意义.

参考文献

[1] Van Swygenhoven H .Polycrystalline materials - Grain boundaries and dislocations[J].Science,2002(5565):66-67.
[2] Yamako V;Wolf D;Phillopt S R et al.Dislocation processes in the deformation of nanocrystalline materials[J].Nature Materials,2002,1:1.
[3] David Stewart;Ke-Shen Cheong .Molecular dynamics simulations of dislocations and nanocrystals[J].Current Applied Physics,2008,8:494.
[4] Gutkin M Yu;Ovid'ko I A;Skiba N V .Emission of partial dislocations from triple junctions of grain boundaries in nanoerystalline materials[J].Journal of Physics D:Applied Physics,2005,38:3921.
[5] Vo N Q;Averbaek R S;Bellon P et al.Quantitative description of plastic deformation in nanoerystalline Cu-dislocation glide versus grain boundary sliding[J].Physical Review B:Condensed Matter,2008,77:134108.
[6] Swygenhoven H Van;Derlet P M;Hasnaoui A .Atomic mechanism for dislocation emission from nanosized grain boundaries[J].Physical Review B:Condensed Matter,2002,66:024101.
[7] Derlet P M;Hasnaoui A;Swygenhoven H Van .Atomistic simulations as guidance to experiments[J].Scripta Materialia,2003,49:629.
[8] Yamako V;Wolf D;Phillopt S E et al.Deformation-mechanismrnap for nanocrystalline metals by molecular-dynamics simulation[J].Nature Materials,2004,3:43.
[9] Froseth A G;Derlet P M;Swygenhoven H Van .Dislocations emitted from nsnocrystalline grain boundaries:Nucleation and splitting distance[J].Acta Materialia,2008,52:5863.
[10] Swygenhoven H Van;Derlet P M;Frφseth A G .Nucleation and propagation of dislocations in nanocrystalline fec metals[J].Acta Materialia,2006,54:1975.
[11] Brandstetter S;Budrovic Z;Petegem S Van et al.Temperature-dependent residual broadening of X-ray diffraction spectra in nsnocrystalline plasticity[J].Applied Physics Letters,2005,87:231910.
[12] Budrovic Z;Van Swygenhoven H;Derlet PM;Van Petegem S;Schmitt B .Plastic deformation with reversible peak broadening in nanocrystalline nickel[J].Science,2004(5668):273-276.
[13] Bitzek E;Brandl C;Derlet P M et al.Dislocation cross-slip in nanocrystalline fcc metals[J].Physical Review Letters,2008,100:235501.
[14] Wang Y M;Ma E .Temperature and strain rate effects on the strength and ductility of nanosctructured Cu[J].Applied Physics Letters,2003,83:3165.
[15] Wei Q;Cheng S et al.Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume,fee versus bcc metals[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2004,381:71.
[16] Wu X L;Ma E .Dislocations in nanocrystalline grains[J].Applied Physics Letters,2006,88:231911.
[17] Legros M.;Rittner MN.;Weertman JR.;Hemker KJ.;Elliott BR. .Microsample tensile testing of nanocrystalline metals[J].Philosophical Magazine.A.Physics of condensed matter, defects and mechanical properties,2000(4):1017-1026.
[18] Schiotz J;Jacobsen KW .A maximum in the strength of nanocrystalline copper[J].Science,2003(5638):1357-1359.
[19] Hugo R C;Kung H;Weertman J R et al.In-situ TEM tensile testing of DC magnetron sputtered and pulsed laser deposited Ni thin films[J].Acta Mater,2003,51:1937.
[20] Carlton, CE;Ferreira, PJ .Dislocation motion-induced strain in nanocrystalline materials: Overlooked considerations[J].Materials Science and Engineering. A, Structural Materials: Properties, Microstructure and Processing,2008(1/2):672-674.
[21] Zheng YG;Zhang HW;Chen Z;Lu C;Mai YW .Roles of grain boundary and dislocations at different deformation stages of nanocrystalline copper under tension[J].Physics Letters, A,2009(5):570-574.
[22] Yaruako V;Wolf D;Phillopt S R et al.Dislocation-dislocation and dislocation-twin reactions in nanocrystalline Al by molecular dynamics simulation[J].Acta Materialia,2003,51:4135.
[23] Tschoppa M A;McDowella D L .Grain boundary dislocation sources in nanocrystalline copper[J].Scripta Materialia,2008,58:299.
[24] Bobylev S V;Gutkin M Yu;Ovid'ko I A .Partial and split dislocation configurations in mnocrystalline metals[J].Physical Review B:Condensed Matter,2006,73:064102.
[25] Arakawa K;Hatanaka M;Kuramoto E et al.Changes in the burgers vector of perfect dislocation loops without contact with the external dislocatiom[J].Physical Review Letters,2006,96:125506.
[26] Huang, X;Kamikawa, N;Hansen, N .Property optimization of nanostructured ARB-processed Al by post-process deformation[J].Journal of Materials Science,2008(23/24):7397-7402.
[27] Wu XL;Ma E .Dislocations and twins in nanocrystalline Ni after severe plastic deformation: the effects of grain size[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2008(0):84-86.
[28] Gubicza J.;Goren-Muginstein GR.;Rosen AR.;Ungar T.;Ribarik G. .The density and the character of dislocations in cubic and hexagonal polycrystals determined by X-ray diffraction[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2001(0):60-63.
[29] Ungar T.;Ribarik G.;Borbely A.;Gubicza J. .Crystallite size distribution and dislocation structure determined by diffraction profile analysis: principles and practical application to cubic and hexagonal crystals[J].Journal of Applied Crystallography,2001(3):298-310.
[30] Ungar T .Characterization of nanocrystalline materials by X-ray line profile analysis[J].Journal of Materials Science,2007(5):1584-1593.
[31] Zhao Y H;Lu K;Zhang K .Microstructure evolution and thermal properties in nanoerystalline Cu during mechanical attrition[J].Physical Review B:Condensed Matter,2002,66:085404.
[32] Ungár T .Dislocation densities,arrangements and character from X-ray diffraction experiments[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2001,309-310:14.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%