为了解环形液池内耦合热溶-质毛细对流的转变特征,建立了环形液池内的耦合热-溶质毛细对流的物理数学模型,采用有限容积法进行二维数值模拟,得到了环形液池内耦合热-溶质毛细对流失稳的临界条件,并对耦合热-溶质毛细对流失稳机理进行了分析.结果表明:环形液池内流态从稳态到非稳态的转变为霍普夫分岔;随着深宽比、半径比和普朗特数的增加,流动更容易失稳;当刘易斯数大于1时,临界毛细雷诺数随着刘易斯数的增大而减小,流动失稳是由于溶质Marangoni效应的主导作用和流动的惯性共同作用的结果;而当刘易斯数小于1时,随着刘易斯数的增大,临界毛细雷诺数增大,流动失稳则是由于热Marangoni效应的主导作用和流动的惯性共同作用的结果.
参考文献
[1] | Bergman T L .Numerical simulation of double-diffusive Marangoni convection[J].Physics of Fluids,1986,29(07):2103. |
[2] | Chen, ZW;Li, YS;Zhan, JM .Double-diffusive Marangoni convection in a rectangular cavity: Onset of convection[J].Physics of fluids,2010(3):034106:1-034106:13. |
[3] | Zhan, J.-M.;Chen, Z.-W.;Li, Y.-S.;Nie, Y.-H. .Three-dimensional double-diffusive Marangoni convection in a cubic cavity with horizontal temperature and concentration gradients[J].Physical review, E. Statistical, nonlinear, and soft matter physics,2010(6 Pt.2):066305-1-066305-14. |
[4] | A. Bahloul;R. Delahaye;P. Vasseur;L. Robillard .Effect of surface tension on convection in a binary fluid layer under a zero gravity environment[J].International Journal of Heat and Mass Transfer,2003(10):1759-1771. |
[5] | Chen C F;Cho Lik Chan .Stability of buoyancy and surface tension driven convection in a horizontal doubPr-diffusive fluid layer[J].International Journal of Heat and Mass Transfer,2010,53(7-8):1563. |
[6] | Guckenheimer J;Holmes P.Nonlinear oscillations,dynamical systems and bifurcations of vector fields[M].New York:springer-verlag,1983 |
[7] | Drazin P G;Reid W H.Hydrodynamic stability[M].Cambridge:Cambridge University Press,1981 |
[8] | Li Y R;Liu Y S;Shi W Y et al.Stability of thermocapillary convection in annular pools with low Prandtl number fluid[J].Microgravity Sci Techn,2009,21(Supplement 1):283. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%