采用机械搅拌与高能超声处理法制备了纳米SiC颗粒(n-SiCp)增强的镁基复合材料,探讨了基体及其复合材料的干滑动摩擦磨损行为.结果表明:由于纳米颗粒的强化作用,复合材料的耐磨性能要明显的强于基体,随着载荷的增加,基体和复合材料的磨损率线性增加,在磨损过程中,基体和复合材料经过磨合磨损和稳态磨损两个阶段.通过对磨损表面的显微分析发现,磨损机制主要是粘着磨损、磨粒磨损和剥层磨损,载荷大小对磨损机制有重要影响.
参考文献
[1] | Mondal A K;Kumar S .[J].Wear,2009,267:458. |
[2] | Cao G;Kobliska J;Konishi H et al.[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,2008,39(04):880. |
[3] | Cao, G;Konishi, H;Li, X .Mechanical properties and microstructure of SiC-reinforced Mg-(2,4)A1-1Si nanocomposites fabricated by ultrasonic cavitation based solidification processing[J].Materials Science and Engineering. A, Structural Materials: Properties, Microstructure and Processing,2008(1/2):357-362. |
[4] | Ferkel H;Mordike B L .[J].Materials Science and Engineering A,2001,298:193. |
[5] | Hassan SF;Gupta M .Effect of different types of nano-size oxide particulates on microstructural and mechanical properties of elemental Mg[J].Journal of Materials Science,2006(8):2229-2236. |
[6] | Srikanth N;Zhong X L;Gupta M .[J].Materials Letters,2005,59:3851. |
[7] | Lee C J;Huang J C;Hsieh P J .[J].Scripta Materialia,2006,54:1415. |
[8] | Lim C Y H;Leo D K;Ang J J S et al.[J].Wear,2005,259:620. |
[9] | Habibnejad-Korayem M;Mahmudi R;Ghasemi H M et al.[J].Wear,2010,268:405. |
[10] | Li X C et al.[J].Journal of Materials Science,2004,39:3211. |
[11] | 刘世英,李文珍,贾秀颖,高飞鹏,张琼元.纳米SiC颗粒增强AZ91D复合材料的制备及性能[J].稀有金属材料与工程,2010(01):134-138. |
[12] | Archard J F .[J].Journal of Applied Physics,1953,24:981. |
[13] | 许栩达 .SiCp/ZL109复合材料制备及摩擦磨损性能研究[D].中南大学,2008. |
[14] | 温诗铸;黄平.摩擦学原理[M].北京:清华大学出版社,2002:301. |
[15] | 马跃 .纳米 Al2O3 颗粒增强铜基复合材的摩擦磨损性能研究[D].长春:吉林大学,2006. |
[16] | Liu Shiying;Gao Feipeng;Zhang Qiongyuan.Mechanical Properties and Microstrutures of Nano-Sized SiC Particles Reinforced AZ91D Nanocomposites Fabricated by High Intensity Ultrasonic Assisted Casting[J].Materials Science Forum,2009:449-452. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%