欢迎登录材料期刊网

材料期刊网

高级检索

通过冷轧变形并结合中间退火制备了Cu-15Cr和Cu-15Cr-0.24Zr形变原位纤维复合薄板材料。采用扫描电子显微镜、拉伸试验机和电阻率测试仪研究了Zr及退火温度对Cr纤维形貌、合金强度及导电性能的影响。结果表明:Cr纤维随退火温度升高依次发生:边缘球化、晶界开裂和纤维断裂;Zr的加入使Cr纤维球化、断裂行为延迟约100℃;Zr提高了复合材料的抗拉强度,并使其抗软化温度提高100oC;450oC时,Cu-15Cr的抗拉强度/导电率达到良好的匹配,为656MPa/81.7%IACS,550℃时,Cu-15Cr-0.24Zr的抗拉强度/导电率达到良好的匹配,为722MPa/81.3%IACS。

The Cu-15Cr and Cu-15Cr-0. 24Zr in-situ composites were prepared successfully by heavy cold rolling and intermediate heat treatment. The effect of Zr and heat treatment temperature on the Cr fibres morphology and properties of the composites were investigated by SEM, tensile and resistance tests. The results show that Cr fibre spheroidizing, grain boundary cracking and fibres fracture occurs successively with increasing annealing temperature. The temperature of fibre edge spheroidizing and fracture of Cr fibres rise 100 ~C by addition of Zr in the composites, and tensile strength and softening temperature of the composites are increased by adding Zr element. The softening temperature of Cu-15Cr-0.24Cr composites is enhanced by 100 ~C than that of Cu-15Cr composites. Cu-15Cr composites show an excellent combination of tensile strength and electrical conductivity after annealing at 450 ℃ , which are 656 MPa and 81.7% IACS, and Cu-15Cr-0. 24Zr composites show an excellent combination of tensile strength and electrical conductivity after annealing at 550 ℃ , which are 722 MPa and 81.3% IACS.

参考文献

[1] 刘平.超高强度铜基原位复合材料研究进展[J].金属热处理,2008(01):72-77.
[2] V. Vidal;L. Thilly;S. Van Petegem .Plasticity of nanostructured Cu-Nb-based wires: Strengthening mechanisms revealed by in situ deformation under neutrons[J].Scripta materialia,2009(3):171-174.
[3] V. Vidal;L. Thilly;F. Lecouturier;P.-O. Renault .Cu nanowhiskers embedded in Nb nanotubes inside a multiscale Cu matrix: The way to reach extreme mechanical properties in high strength conductors[J].Scripta materialia,2007(3):245-248.
[4] Hong S I;Hill M A .Microstructure stability of Cu-Nb microcomposites fabricated by the bundling and drawing process[J].Materials Science and Engineering A,1999,281:189-197.
[5] 葛继平,姚再起.高强度高导电的形变Cu-Fe原位复合材料[J].中国有色金属学报,2004(04):568-573.
[6] 陈小红,刘平,田保红,张毅,贾淑果,任凤章,井晓天.形变Cu-Cr原位复合材料中纤维相的热稳定性[J].中国有色金属学报,2009(02):328-333.
[7] 周继宝,王恩刚,左小伟,屈磊,张林,赫冀成.Cu-12.8%Fe复合材料的形变热处理工艺和性能[J].材料热处理学报,2011(11):12-17.
[8] 刘嘉斌,孟亮,张雷.等温退火对纤维相复合强化Cu-12%Ag合金组织、力学性能及电导率的影响[J].稀有金属材料与工程,2005(09):1460-1464.
[9] Ge Jiping.MODELLING OF BREAKUP OF Cr FILAMENTS IN WIRE-DRAWN Cu-BASED IN SITU COMPOSITES[J].中国有色金属学会会刊(英文版),1999(02):223-229.
[10] Sharma G;Ramanujan R V;Tiwari G P .Instabiliy mechanisms in lamellar microstructures[J].Acta Metallurgica,2000,48:875-889.
[11] KampeJ C M;Courtney T H;Leng Y .Shape instabilities of plate-like structure-l experimental observations in heavily cold worked in situ composites[J].Acta Metallurgica,1989,37:1735-1745.
[12] DengJianqi;Zhang Xiuqing;Shang Shuzhen et al.Effect of Zr addition on the microstructure and properties of Cu-IOCr in situ composites[J].Materials & Design,2009,30:4444-4449.
[13] Sharma G;Ramanujan R V;Tiwari G P .Instabiliy mechanisms in lamellar microstructures[J].Acta Metallurgica,2000,48:875-889.
[14] Maizahn KampeJ C;Courtney T H .Elevated temperature microstructural stability of heavily cold-worked in-situ composites[J].Scripta Materialia,1986,20:285-289.
[15] Hong S.I.;Hill M.A. .Strength and Ductility of Heavily Drawn Bundled Cu-Nb Filamentary Microcomposite Wires with Various Nb Contents[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,2000(10):2457-2462.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%