针对微细通道内甲烷自热重整反应,采用活性位浓度比为10∶1的Ni/Rh催化剂建立了数学物理模型,通过数值模拟方法研究了绝热工况下温度、流量、氧碳比及水碳比等因素对催化重整特性的影响规律.结果表明:催化反应的温度阈值为750K,当温度超过750K时甲烷转化率迅速升高;在纯氧条件下随着甲烷流量的增大,制氢功率增大,而在空气条件下制氢功率减小;随着氧碳比的增加,甲烷的转化率升高,制氢功率先增大后逐渐减小;随着水碳比的增加,甲烷转化率降低;当入口反应气中氧碳比控制在0.5以下、水碳比为3.5且入口温度为900K时,可实现微通道内甲烷催化重整的高效转化.
参考文献
[1] | 杨修春,韦亚南.甲烷重整制氢用催化剂的研究进展[J].材料导报,2007(05):49-52,64. |
[2] | Jamelyn D Holladay;Evan O Jones;Max Phelps et al.Microfuel procesor for use in a miniature power supply[J].Journal of Power Sources,2002,108(02):21. |
[3] | Filomena Pinto;Rui Neto Andre;Carlos Franco;Ricardo Costa;Ibrahim Gulyurtlu .Methane reforming of syngas produced by co-gasification of coal and wastes Effect of catalysts and of experimental conditions[J].Fuel,2011(4):1645-1654. |
[4] | Fanhui Meng;Guangyin Chen;Yaquan Wang;Yuan Liu .Metallic Ni monolith-Ni/MgAl_2O_4 dual bed catalysts for the autothermal partial oxidation of methane to synthesis gas[J].International journal of hydrogen energy,2010(15):8182-8190. |
[5] | Appel C;Mantzaras J;Schaeren R et al.Partial catalytic oxidation of methane to synthesis gas over rhodium:In situ Raman experiments and detailed simulations[J].Proc Combus Inst,2005,30(02):2509. |
[6] | 闫云飞,张力,冉景煜,唐强,邱赟,马盟.微型燃烧器预混腔内催化重整、积碳及流动特性模拟[J].工程热物理学报,2008(01):89-92. |
[7] | Ethan S.Hecht;Gaurav K.Gupta;Huayang Zhu;Anthony M.Dean;Robert J.Kee .Methane reforming kinetics within a Ni-YSZ SOFC anode support[J].Applied Catalysis, A. General: An International Journal Devoted to Catalytic Science and Its Applications,2005(1):40-51. |
[8] | McGuire, N.E.;Sullivan, N.P.;Kee, R.J.;Zhu, H.;Nabity, J.A.;Engel, J.R.;Wickham, D.T.;Kaufman, M.J. .Catalytic steam reforming of methane using Rh supported on Sr-substituted hexaaluminate[J].Chemical Engineering Science,2009(24):5231-5239. |
[9] | Xuli Zhai;Yinhong Cheng;Zhongtao Zhang;Yong Jin;Yi Cheng .Steam reforming of methane over Ni catalyst in micro-channel reactor[J].International journal of hydrogen energy,2011(12):7105-7113. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%