欢迎登录材料期刊网

材料期刊网

高级检索

对热变形AZ31镁合金的显微组织、晶粒尺寸分布、平均晶粒尺寸、再结晶晶粒数目以及变形织构随退火时间的变化进行了定量分析, 研究了不同热变形量AZ31镁合金在503 K的等温退火行为。结果表明: 热变形AZ31镁合金的细晶组分随着退火时间的延长不断降低, 退火过程按退火温度可分为孕育、再结晶急速长大和晶粒正常长大三个阶段, 且各阶段的其长短几乎不受变形程度的影响。 变形形成的微观织构在整个退火过程中几乎没有变化, 说明热变形镁合金在退火过程中没有新核形成, 即为连续静态再结晶。

The static recrystallization of hot-deformed magnesium alloy AZ31 during isothermal annealing were investigated at temperature 503 K by optical and SEM/EBSD metallographic observation. The grain size (D) change during isothermal annealing is categorized into three regions, i.e. an incubation period for grain growth, rapid grain coarsening, and normal grain growth. The number of fine grains per unit area, however, is reduced remarkably even in incubation period. This leads to grain coarsening taking place continuously in the whole period of annealing. In contrast, the deformation texture scarcely changes even after full annealing at high temperatures. It is concluded that the annealing processes operating in hot-deformed magnesium alloy can be mainly controlled by grain coarsening accompanied with no texture change, that is, continuous static recrystallization.

参考文献

[1]
[2]
[3] D.Lahaie, J.D.Embury, M.M.Chadwick, G.T.Gray, A note on the deformation of fine grained magnesium alloys, Scripta Metallurgica et Materialia, 27(2), 139(1992)
[2]J.Xing, H.Sohde, X.Yang, H.Miura, T.Sakai, Ultra-fine grain development in magnesium alloy AZ31 during multidirectional forging under decreasing temperature conditions, Materials Transactions, 46(20), 1646(2005)
[3]X.Yang, H.Miura, T.Sakai, Dynamic evolution of new grains in magnesium alloy AZ31 during hot deformation, Materials Transactions, 44(1), 197(2003)
[4]M.R.Barnett, M.D.Nave, C.J.Bettles, Deformation microstructures and textures of some cold rolled Mg alloys, Materials Science and Engineering, A386, 205(2004)
[5] H.Watanabe, T.Mukai, K.Ishikawa, Effect of temperature of differential speed rolling on room temperature mechanical properties and texture in an AZ31 magnesium alloy, Journal of Materials Processing Technology, 182, 644(2007)
[6] A.Styczynski, Ch.Hartig, J.Bohlen, D.Letzig, Cold rolling textures in AZ31 wrought magnesium alloy, Scripta Materialia, 50, 943(2004)
[7] S.R.Agnew, O.Duygulu, Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B, International journal of plasticity, 21, 1161(2005)
[8]F.Kaiser, D.Letzig, J.Bohlen, A.Styczynski, Ch.Hartig, K.U.Kainer, in Magnesium Alloys 2003, Anisotropic Properties of Magnesium Sheet AZ31, edited by Y.Kojima, T.Aizawa, K.Higashi, S.Kamado (Switzerland, Trans. Tech. Pub., 2003) p.315
[9]R.D.Doherty, D.A.Hughes, F.J.Humphreys, J.J.Jonas, D.J.Jensen, M.E.Kassner, W.E.King, T.R.Mcnelley, H.J.Mcqueen, A.D.Rollett , Current issues in recrystallization: a review, Materials Science and Engineering, A238, 219(1997)
[10]T.Mohri, M.Mabuchi, N.Nakamura, T.Asahina, H.wasaki, T.Aizawa, K.Higashi, Microstructural evolution and superplasticity of rolled Mg-9Al-1Zn, Materials Science and Engineering, A290(1-2), 139(2000)
[11]R.Kaibyshev, A.Galiyev, O.Sitdikov, On the possibility of producing a nanocrystalling structure in magnesium and magnesium alloys, Nanostructured Materials, 6(5-8), 621(1995)
[12]X.Yang, H.Miura, T.Sakai, Isochronal Annealing Behaviors of Magnesium Alloy AZ31 After Hot Deformation, Materials Transactions, 46(12), 2981(2005)
[13]X.Li, P.Yang, L.N.Wang, L.Meng, F.Cui, Orientational analysis of static recrystallization at compression twins in a magnesium alloy AZ31, Materials Science and Engineering, A517, 160(2009)
[14]A.G.Beer, M.R.Barnett, Microstructure evolution in hot worked and annealed magnesium alloy AZ31, Materials Science and Engineering A, 485(1-2), 318(2008)
[15]M.T.Prm´
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%