利用一阶偏导数项的四阶紧致差分算子,直接推导出了数值求解二维对流反应方程的一种新的高精度紧致差分格式.为了提高差分方程的求解效率,采用多重网格加速技术,建立了与之相适应的多重网格V循环算法.数值实验结果验证了本文方法的精确性和可靠性.
参考文献
[1] | Idelsohn S;Nigro N;Storti M et al.A Petrov-Galerkin Formulation for Advection-Reaction-Diffusion Problems[J].Computer Methods in Applied Mechanics and Engineering,1996,136:27-46. |
[2] | Tony W. H. Sheu;H. Y. Shiah .The two-dimensional streamline upwind scheme for the convection-reaction equation[J].International Journal for Numerical Methods in Fluids,2001(5):575-591. |
[3] | Gupta M M;Manohar R P;Stephenson J W .A Single Cell High Order Scheme for the Convection-Diffusion Equation with Variable Coefficients[J].International Journal for Numerical Methods in Fluids,1984,4:641-651. |
[4] | Gupta M M;Kouatchou J;Zhang J .A Compact Multigrid Solver for Convection-Diffusion Equations[J].Journal of Computational Physics,1997,132:123-129. |
[5] | Zhang J .Accelerated Multigrid High Accuracy Solution of the Convection-Diffusion Equation with High Reynolds Number[J].Numerical Methods for Partial Differential Equations,1997,13:77-92. |
[6] | Ge L X;Zhang J .High Accuracy Iterative Solution of Convection Diffusion Equation with Boundary Layers on Nonuniform Grids[J].Journal of Computational Physics,2001,171:560-578. |
[7] | BRANDT A .Multi-Level Adaptive Solution to BoundaryValue Problems[J].Mathematics of Computation,1977,31:333-390. |
[8] | 哈克布思W;林群.多重网格方法[M].北京:科学出版社,1988 |
[9] | Wesseling P W.An Introduction to Multigrid Methods[M].Chichester:Wiley and Sons,1992 |
[10] | Gupta M M;Kouatchou J;Zhang J .Comparison of Second- and Fourth-Order Discretizations for Multigrid Poisson Solvers[J].Journal of Computational Physics,1997,132:226-232. |
[11] | Zhang J .Fast and High Accuracy Multigrid Solution of the Three Dimensional Poisson Equation[J].Journal of Computational Physics,1997,143:449-461. |
[12] | 葛永斌,吴文权,卢曦.基于二维泊松方程六阶紧致格式的多重网格方法[J].上海理工大学学报,2002(04):337-340,344. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%