为了提高陶瓷材料的断裂韧性和可靠度,改善材料抵御破坏的能力,将优化的多重增韧机制应用到氧化铝基陶瓷材料的开发中.相变增韧机制可以耗散部分能量,降低裂纹尖端处的应力集中程度,阻止或延缓裂纹扩展速率.当增强相分布较为合理、材料的致密度较高时,裂纹偏转与桥接增韧机制可以有效地削弱裂纹扩展动力,提高材料的断裂韧性.利用扩展有限元(X FEM)手段讨论了裂纹扩展问题,为分析陶瓷复合材料的多重增韧机制提供了新思路.
参考文献
[1] | Wang R G,Pan W,Chen J,et al.Microstructure and me chanical properties of machinable Al2O3/LaPO4 composites by hot pressing[J].Ceramics International,2003,29 (1):83-89.,2003. |
[2] | Sumitomo T,Aizawa T,Yamamoto S.In situ formation of self lubricating tribo films for dry machinability[J].Surface and Coatings Technology,2005,200(5-6):1797-1803.,2005. |
[3] | ChenJ H,Yoo W J,Chan DS H,et al.Self assembly of Al2O3 nanodots on SiO2 using two step controlled annealing technique for long retention nonvolatile memories[J].Ap plied Physics Letters,2005,86(7):073114.,2005. |
[4] | Monteverde F.The addition of SiC particles into a MoSi2doped ZrB2 matrix:effects on densification,microstructure and thermo physical properties[J].Materials Chemistry and Physics,2009,113(2-3):626-633.,2009. |
[5] | Mishra S K,Das S K,Pathak L C.Sintering behaviour of self propagating high temperature synthesised ZrB2-Al2O3 composite powder[J].Materials Science and Engineering:A,2006,426(1-2):229-234.,2006. |
[6] | Parthasarathy T A,Rapp R A,Opeka M,et al.A model for the oxidation of ZrB2,HfB2 and TiB2[J].Acta Materialia,2007,55(17):5999 6010.,2007. |
[7] | Opeka M M,Talmy I G,Wuchina E J,et al.Mechanical,thermal,and oxidation properties of refractory hafnium and zirconium compounds[J].Journal of the European Ceramic Society,1999,19(13-14):2405-2414.,1999. |
[8] | Sciti D,Monteverde F,Guicciardi S,et al.Microstructure and mechanical properties of ZrB2-MoSi2 ceramic composites produced by different sintering techniques[J].Materials Sci ence and Engineering:A,2006,434(1-2):303-309.,2006. |
[9] | Kim T S,Goto T,Lee B T.Microstructure control and me chanical properties of fibrous Al2O3/ZrO2 composites fabrica ted by extrusion process[J].Scripta Materialia,2005,52 (8):725 729.,2005. |
[10] | 温兆银,林祖镶,顾中华,等.ZrO2在β Al2 O3复合陶瓷中 的作用[J].复合材料学报,1996,13(3):39-43.Wen Zhaoyin,Lin Zuxiang,Gu Zhonghua,et al.Behaviour of ZrO2in β Al2O3ceramics[J].Acta Materiae Compositae Sinica,1996,13(3):39-43.,1996. |
[11] | Rao P,Iwasa M,Wu J Q,et al.Effect of Al2O3 addition on ZrO2 phase composition in the Al2O3-ZrO2 system[J].Ce ramics International,2004,30(6):923-926.,2004. |
[12] | Lin X B,Smith R A.Finite element modelling of fatigue crack growth of surface cracked plates:Part Ⅰ:the numerical technique[J].Engineering Fracture Mechanics,1999,63(5):503-522.,1999. |
[13] | Ooi E T,Yang Z J.Modelling multiple cohesive crack propa gation using a finite element scaled boundary finite element coupled method[J].Engineering Analysis with Boundary El ements,2009,33(7):915-929.,2009. |
[14] | Mo6s N,Belytschko T.Extended finite element method for cohesive crack growth[J].Engineering Fracture Mechanics,2002,69(7):813-833.,2002. |
[15] | Trollé B,Gravouil A,Baietto M C,et al.Optimization of a stabilized X FEM formulation for frictional cracks[J].Finite Elements in Analysis and Design,2012,59:18-27.,2012. |
[16] | Pierres E,Baietto M C,Gravouil A,et al.3D two scale X FEM crack model with interfacial frictional contact:applica tion to fretting fatigue[J].Tribology International,2010,43(10):1831-1841.,2010. |
[17] | Perrière L,Valle R,Carrare N,et al.Crack propagation and stress distribution in binary and ternary directionally solidified eutectic ceramics[J].Journal of the European Ceramic Socie ty,2011,31(7):1199-1210.,2011. |
[18] | Swanson P L,Fairbanks C J,Lawn B R,et al.Crack inter face grain bridging as a fracture resistance I,mechanism in ceramics:I,experimental study on alumina[J].Journal of the American Ceramic Society,1987,70(4):279-289.,1987. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%