功能材料, 2008, 39(8): 1322-1325.
厚度与工作温度对TiO2薄膜气敏性能的影响
王锡铭 1, , 张俊英 2, , 丛亮 3, {"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用青铜法工艺制备了Nb3Sn超导线材,研究了不同的结构设计、中间退火温度、成相热处理制度等对线材性能的影响.实验结果表明,具有相同的青铜/NbTa体积比而芯丝直径不同的线材,芯丝尺寸在合理范围内越小,临界电流密度越高;使用Ta阻隔层的线材的磁滞损耗有大幅下降,但其加工性能较之Nb阻隔层要差;低的退火温度在改善青铜加工硬化的同时减少了Nb3Sn超导相预反应生成量,线材性能较高.","authors":[{"authorName":"张科","id":"3b841572-d257-43b7-8282-fe2f844d5837","originalAuthorName":"张科"},{"authorName":"张平祥","id":"f17eb49b-41f5-482d-85df-2413a3da013d","originalAuthorName":"张平祥"},{"authorName":"郭建华","id":"5cbd7987-fef7-4372-a529-1226cb0347ee","originalAuthorName":"郭建华"},{"authorName":"贾晶晶","id":"512f5073-57c3-43fb-87e0-e4809a547445","originalAuthorName":"贾晶晶"},{"authorName":"高慧贤","id":"8e006807-41ad-47f0-855b-f23653312459","originalAuthorName":"高慧贤"},{"authorName":"李建峰","id":"90f3a62d-c3ee-44c6-a0ec-77eee902655e","originalAuthorName":"李建峰"},{"authorName":"刘建伟","id":"59d8a8ae-7615-47ae-999f-fc5b364c39ec","originalAuthorName":"刘建伟"},{"authorName":"冯勇","id":"4a264827-d29e-4f3c-a916-acb3208d575a","originalAuthorName":"冯勇"},{"authorName":"刘向宏","id":"3c8e65e7-626c-4ee8-a930-8ed13f992fe7","originalAuthorName":"刘向宏"}],"doi":"","fpage":"8","id":"ec8c5490-0192-4fb1-93fd-5c49d6361065","issue":"1","journal":{"abbrevTitle":"DWWLXB","coverImgSrc":"journal/img/cover/DWWLXB.jpg","id":"19","issnPpub":"1000-3258","publisherId":"DWWLXB","title":"低温物理学报 "},"keywords":[{"id":"65b925bf-980e-453c-b34a-23cd9e9f310b","keyword":"青铜法Nb3Sn线材","originalKeyword":"青铜法Nb3Sn线材"},{"id":"64971e5e-9c2d-4697-b86d-37ae0d289889","keyword":"临界电流密度","originalKeyword":"临界电流密度"},{"id":"b5adffb9-410e-4f5d-bbcc-246573de7135","keyword":"磁滞损耗","originalKeyword":"磁滞损耗"},{"id":"a4e3c884-78c1-42f1-b5e2-ddd7d6639ca9","keyword":"显微结构","originalKeyword":"显微结构"}],"language":"zh","publisherId":"dwwlxb201601002","title":"青铜法Nb3Sn超导线材的性能优化研究","volume":"38","year":"2016"},{"abstractinfo":"本文采用超导量子干涉仪(SQUID)测定了一种国际热核聚变实验堆(ITER)项目用内锡法Nb3Sn超导线材的不可逆温度,测量方法是在恒定磁场下循环温度,即将温度以一定间隔从10K上升到20K,然后再返回到10K,测定磁矩的偏离温度. 所得结果可用于从生成最佳Nb-Sn相组成方面来优化A15相成相热处理制度. 本研究得出的结论是,对于像ITER使用的高场磁体超导线来说,鉴于其需要在较高磁场下有高的临界电流密度,就需要将超导线的热处理温度适当提高一些. 本实验所用Nb3Sn超导线材的最适宜热处理制度为:675°C/128小时,这样可以得到最佳不可逆温度特性,即最佳的A15相组成.","authors":[{"authorName":"张超武","id":"be617ec2-297c-4537-a8ad-a0e305a7e239","originalAuthorName":"张超武"},{"authorName":"","id":"de263a79-aec4-485b-93fe-6eb935b2234f","originalAuthorName":""},{"authorName":"周廉","id":"3e62b47d-8f91-41ec-9290-00392d45ed79","originalAuthorName":"周廉"},{"authorName":"唐先德","id":"11ebfa21-1046-4ec1-a1b3-4a22cb361fd5","originalAuthorName":"唐先德"},{"authorName":"","id":"fb55ca77-072e-4499-84c4-0a1091c2432e","originalAuthorName":""},{"authorName":"张平祥","id":"e67ab32a-1283-401a-8d2e-c5fbe83d9fb1","originalAuthorName":"张平祥"},{"authorName":"卢亚峰","id":"9cbde4f1-1345-4f79-871a-9005f9cb64b4","originalAuthorName":"卢亚峰"}],"doi":"10.3969/j.issn.1000-3258.2006.04.002","fpage":"311","id":"9f600dc6-b5e3-4b45-8b68-ccf4fa91bb75","issue":"4","journal":{"abbrevTitle":"DWWLXB","coverImgSrc":"journal/img/cover/DWWLXB.jpg","id":"19","issnPpub":"1000-3258","publisherId":"DWWLXB","title":"低温物理学报 "},"keywords":[{"id":"f6f8505f-9800-4942-9b1a-7029b339733f","keyword":"Nb3Sn超导线材","originalKeyword":"Nb3Sn超导线材"},{"id":"d0154e05-764b-4396-bec1-31fdea704544","keyword":"不可逆温度","originalKeyword":"不可逆温度"},{"id":"5bc3afa9-fd07-47f3-bc35-9da7542be2fb","keyword":"ITER工程","originalKeyword":"ITER工程"},{"id":"4b197915-f073-4a03-a91a-2bbb54753c06","keyword":"内锡法","originalKeyword":"内锡法"}],"language":"zh","publisherId":"dwwlxb200604002","title":"ITER用内锡法Nb3Sn超导线材的不可逆温度研究","volume":"28","year":"2006"},{"abstractinfo":"为研究Nb3Sn超导材料的A15相成相动力学,设计并制备了四组单组元内锡法(MEIT)超导线.这四组MEIT导线设计了不同的Sn/Cu比,并在一组导线中合金化掺杂了1at%Zr,,所有导线样品先经历210℃/50hr+340℃/25kr的Cu-Sn合金化热处理,然后进行A15相成相热处理.选择四种反应温度:650℃,675℃,700℃和725℃,以研究成相热处理温度和时间的影响.用SEM技术测定所有热处理样品的A15相层厚,然后对不同温度下的热处理时间作图,并进行非线性拟合.所得结果表明四种因素促进了A15相的增长:增加反应温度,延长反应时间,增大Sn/Cu比率和合金化掺杂zr;内锡法Nb,sn超导线材的成相动力学服从Yn=K(T)t变化关系,A15相生长指数n值受热处理温度和Zr掺杂的影响.","authors":[{"authorName":"张超武","id":"1c86f240-bdda-464b-9e45-23c3dbbcb1ea","originalAuthorName":"张超武"},{"authorName":"周廉","id":"5e1e497e-9343-4867-91f2-2264bfc5a89f","originalAuthorName":"周廉"},{"authorName":"唐先德","id":"b8ec16e5-95f7-4498-8be9-51efa47d8e09","originalAuthorName":"唐先德"},{"authorName":"","id":"65dd42ac-5ade-49fb-8f55-7e3506eb6a9d","originalAuthorName":""},{"authorName":"","id":"890127ae-fa4a-4d3a-8f68-ca1cf5d97d43","originalAuthorName":""},{"authorName":"张平祥","id":"925e692b-4b0a-4067-9151-223b59f739d8","originalAuthorName":"张平祥"},{"authorName":"卢亚峰","id":"d05a7313-5202-4d6c-9c18-b4f723f118f9","originalAuthorName":"卢亚峰"}],"doi":"","fpage":"1","id":"308c6933-cd9b-404a-8718-5d3b895ea410","issue":"1","journal":{"abbrevTitle":"DWWLXB","coverImgSrc":"journal/img/cover/DWWLXB.jpg","id":"19","issnPpub":"1000-3258","publisherId":"DWWLXB","title":"低温物理学报 "},"keywords":[{"id":"0bf280f1-cada-4538-8dd7-d9e4b73f3ac4","keyword":"Nb3Sn超导线","originalKeyword":"Nb3Sn超导线"},{"id":"16cfff28-f3e7-41c9-b60c-c07620d12e37","keyword":"单组元内锡法(MEIT)","originalKeyword":"单组元内锡法(MEIT)"},{"id":"6486c9b7-644d-4cb3-896f-bb065f94c7a1","keyword":"Sn/Cu比","originalKeyword":"Sn/Cu比"},{"id":"ee104134-8a2f-47a7-8d99-25e24746db17","keyword":"zr合金化掺杂","originalKeyword":"zr合金化掺杂"},{"id":"e2ec9bef-7b8c-49c8-837b-030bda6d356d","keyword":"A15相成相动力学","originalKeyword":"A15相成相动力学"}],"language":"zh","publisherId":"dwwlxb200901001","title":"内锡法Nb3Sn超导线材的A15相成相动力学研究","volume":"31","year":"2009"},{"abstractinfo":"采用内Sn法工艺研究了ITER用Nb3Sn股线的制备与性能.我们已成功的研究出了批量生产股线的制备技术,股线具有优异的特性.股线非Cu区的临界电流密度Jcn在12T、4.2K、0.1μV/cm判据下达到1087A/mm2;在±3T的磁场变化范围,磁滞损耗为540 kJ/m3(4.2K);股线的n值在12T、4.2K下为20.此外我们也研究了Nb3Sn层的显微结构和Nb/Sn比.","authors":[{"authorName":"唐先德","id":"9e04eb32-9da4-440d-bdec-ce4d52363929","originalAuthorName":"唐先德"},{"authorName":"李春广","id":"02a7a927-71ca-4c92-be7c-62d59fcebfba","originalAuthorName":"李春广"},{"authorName":"武玉","id":"a67d4098-1e53-4bec-88b1-8743133e2e23","originalAuthorName":"武玉"},{"authorName":"李昆","id":"627abb87-5cfe-4cbb-a0d1-a7a7942f35e4","originalAuthorName":"李昆"},{"authorName":"闫果","id":"ca9fd3a7-c07c-4d7f-b464-68d05655759b","originalAuthorName":"闫果"},{"authorName":"杨明","id":"1d0c227c-efb5-4431-b8b7-d5908cdcd51d","originalAuthorName":"杨明"},{"authorName":"周廉","id":"c81c160d-9446-4dab-92fb-f2b67bb07215","originalAuthorName":"周廉"},{"authorName":"张平祥","id":"b11a018d-1712-4e72-a3b3-bd1076d89962","originalAuthorName":"张平祥"},{"authorName":"冯勇","id":"7065d6a8-e561-40f7-8339-f00dd98832a8","originalAuthorName":"冯勇"},{"authorName":"卢亚锋","id":"f198fa8a-81dd-4547-a65f-48fbdae9733c","originalAuthorName":"卢亚锋"},{"authorName":"翁佩德","id":"13507d34-39f2-4930-a5c1-11b3606a3e13","originalAuthorName":"翁佩德"}],"doi":"10.3969/j.issn.1000-3258.2005.z1.102","fpage":"926","id":"a7dbc690-405c-4a27-9f54-cb733ace581f","issue":"z1","journal":{"abbrevTitle":"DWWLXB","coverImgSrc":"journal/img/cover/DWWLXB.jpg","id":"19","issnPpub":"1000-3258","publisherId":"DWWLXB","title":"低温物理学报 "},"keywords":[{"id":"17fa7514-7e61-4b5e-94e0-ba69c81dbace","keyword":"内Sn法Nb3Sn","originalKeyword":"内Sn法Nb3Sn"},{"id":"fd18957b-00db-4c1a-939b-4f44f1d194e7","keyword":"股线制备","originalKeyword":"股线制备"},{"id":"d594d6d7-d825-42cc-ac50-639fbc396456","keyword":"特性","originalKeyword":"特性"},{"id":"f50d5683-a21d-420b-9de9-083760a6bc76","keyword":"显微结构","originalKeyword":"显微结构"}],"language":"zh","publisherId":"dwwlxb2005z1102","title":"核聚变用内Sn法Nb3Sn股线的制备与性能","volume":"27","year":"2005"},{"abstractinfo":"选取2种ITER用内锡法Nb3Sn复合超导线,采用原位中子衍射测量技术检测超导相的形成过程,通过添加第3种元素研究合金化Sn芯和合金化Nb芯对超导相形成过程及超导线超导性能的影响.结果表明:合金化Sn芯比合金化Nb芯丝有利于提高超导性能;少量添加第3种元素Ti与Sn形成合金能显著促进Sn的扩散和A15相的形成,并且能有效抑制Nb3Sn晶粒的生长,因此增加了晶界面积和钉扎力,增强了超导特性,提高了非铜区临界电流密度Jcn.","authors":[{"authorName":"张超武","id":"7628aa73-02cc-4c42-a03d-8bac96fbc151","originalAuthorName":"张超武"},{"authorName":"周廉","id":"0afe36fa-569e-4aa6-8c35-6c4ab4548f0d","originalAuthorName":"周廉"},{"authorName":"唐先德","id":"08d6506c-5e72-4a92-b2d4-a38a0dcede82","originalAuthorName":"唐先德"},{"authorName":"","id":"48b79ddf-1b3f-4c53-a694-c3d46eae359c","originalAuthorName":""},{"authorName":"","id":"c6b3a46a-c819-4b3e-8ff1-215d3d7c50e2","originalAuthorName":""},{"authorName":"张平祥","id":"ac6131d7-2e1e-4e6c-a20f-b50e0b84bc3e","originalAuthorName":"张平祥"},{"authorName":"卢亚峰","id":"e702a214-a65c-40b2-b48d-f173f8268040","originalAuthorName":"卢亚峰"}],"doi":"","fpage":"1367","id":"63c845d9-49ce-44ce-b049-389d85b48201","issue":"9","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"3aa0b0c0-c183-4a5b-b94b-d5687f5c7631","keyword":"Nb3Sn超导线","originalKeyword":"Nb3Sn超导线"},{"id":"3ff2ba96-7fa5-4897-bc75-1d0b1daeb4d8","keyword":"内锡法","originalKeyword":"内锡法"},{"id":"61ae8c57-5e43-44e7-a666-6f682daa8f33","keyword":"中子衍射","originalKeyword":"中子衍射"}],"language":"zh","publisherId":"xyjsclygc200609006","title":"采用中子衍射研究内锡法Nb3Sn的相形成","volume":"35","year":"2006"},{"abstractinfo":"设计并制备四组不同组成的内锡法Nb3Sn单组元线和两组不同结构设计的多芯线.先将所有样品进行210℃/50hr+340℃/25hr的Cu-Sn合金化热处理,接着进行A15相成相热处理.四组单组元线的成相热处理程序是在675oC,700oC和725℃三种温度下热处理100小时和200小时;而两组多芯线的成相热处理程序是在675℃,675℃,700℃和725℃四种温度下热处理128小时和200小时.将所有热处理样品采用X-射线EDS进行A15相组成分布测定,采用SQUID磁化法测定临界温度Tc.所得结果表明,经过足够热处理时间后各种内锡法Nb3Sn超导线的最终A15相组成和Tc与热处理温度、导线复合体组成和结构设计以及第三元素的合金化掺杂无关,而是由这种扩散与固相反应的机制本质所决定的.","authors":[{"authorName":"张超武","id":"273110a9-05e5-49b7-af2e-8384194f6b3d","originalAuthorName":"张超武"},{"authorName":"周廉","id":"f7965ac2-4dc2-4c5c-aa6a-62e33587dbdb","originalAuthorName":"周廉"},{"authorName":"","id":"f6d7222f-1153-44f5-92c3-279abb5d1750","originalAuthorName":""},{"authorName":"","id":"94a02581-4cf5-4eb4-ac29-3e44d375bf1c","originalAuthorName":""},{"authorName":"唐先德","id":"d2bfe9d2-bcc1-4a5c-89f2-0316bf3c1848","originalAuthorName":"唐先德"}],"doi":"","fpage":"88","id":"ba3531db-3c3b-4319-9a17-172181b3703f","issue":"2","journal":{"abbrevTitle":"DWWLXB","coverImgSrc":"journal/img/cover/DWWLXB.jpg","id":"19","issnPpub":"1000-3258","publisherId":"DWWLXB","title":"低温物理学报 "},"keywords":[{"id":"eb2583d1-b0c9-4d35-99a8-72a380714ff9","keyword":"内锡法Nb3Sn超导线","originalKeyword":"内锡法Nb3Sn超导线"},{"id":"6b36ef5d-1055-45b9-b050-81885f90160f","keyword":"A15相组成","originalKeyword":"A15相组成"},{"id":"a035394a-6842-4d24-9db7-2a0b4657ea4f","keyword":"成相热处理","originalKeyword":"成相热处理"},{"id":"e8241daf-7ab1-4193-9932-48e3f5038cdf","keyword":"复合体组成与结构设计","originalKeyword":"复合体组成与结构设计"},{"id":"dd3e9c33-3429-49f6-9339-174e30eb03dc","keyword":"第三元素掺杂","originalKeyword":"第三元素掺杂"}],"language":"zh","publisherId":"dwwlxb201102002","title":"内锡法Nb3Sn超导线A15相组成及Tc的特征研究","volume":"33","year":"2011"},{"abstractinfo":"Nb3 Sn金属合金是一种性能优良的超导材料。磁控溅射多层沉积是用两个溅射源分层沉积铌和锡,再经过高温退火后获得超导薄膜的方法。用这种方法所获得的超导薄膜的原子组分的调整比较方便,对于Nb3Sn的研究较为有利。实验测量了样品的超导参数和晶格参数,其超导临界温度(Tc)可达17 K,剩余电阻率(RRR)为5左右。需要进一步研究相关工艺,以便提高RRR,从而使这种方法在超导加速腔的制造中得到应用。","authors":[{"authorName":"李金海","id":"4e022040-ad7e-4095-8540-35661c4ace73","originalAuthorName":"李金海"},{"authorName":"A. A. Rossi","id":"7c4bb0af-da9c-4895-9f3c-6102e4e93f95","originalAuthorName":"A. A. Rossi"},{"authorName":"V. Palmieri","id":"8a45123e-0959-4210-97ab-88d8e7a3dff2","originalAuthorName":"V. Palmieri"}],"doi":"10.11804/NuclPhysRev.32.S1.59","fpage":"59","id":"73ed0d69-c10e-4ecd-9731-a1d2963f5053","issue":"z1","journal":{"abbrevTitle":"YZHWLPL","coverImgSrc":"journal/img/cover/YZHWLPL.jpg","id":"78","issnPpub":"1007-4627","publisherId":"YZHWLPL","title":"原子核物理评论 "},"keywords":[{"id":"209d62e4-5563-4967-9b39-412344878271","keyword":"磁控溅射","originalKeyword":"磁控溅射"},{"id":"e757eb37-23b9-4743-9f30-5963af6451f8","keyword":"超导薄膜","originalKeyword":"超导薄膜"},{"id":"ead19b70-7ca4-4832-b095-b18b09b6047b","keyword":"Nb3 Sn","originalKeyword":"Nb3 Sn"},{"id":"16a465f3-6176-4562-abc7-ad62bb4bb878","keyword":"多层沉积","originalKeyword":"多层沉积"}],"language":"zh","publisherId":"yzhwlpl2015z1013","title":"磁控溅射多层沉积Nb3Sn超导薄膜","volume":"","year":"2015"},{"abstractinfo":"Nb3Sn是典型的低温超导材料,主要应用于高能物理(HEP)和热核聚变(ITER)以及高场核磁共振(NMR)等磁体领域.Nb3Sn材料在2K时的上临界场Hc2达到30T,为其在高场磁体的应用提供了契机.综述了Nb3Sn的发展现状与研究成果,以及近年来其制备工艺的改进和存在的问题.","authors":[{"authorName":"梁明","id":"340aa7b3-364a-4891-b2eb-0b44217e878a","originalAuthorName":"梁明"},{"authorName":"张平祥","id":"99dc3af9-92cf-4a99-93ae-a3740462eb0f","originalAuthorName":"张平祥"},{"authorName":"卢亚锋","id":"b310968a-911f-4af9-a1f2-86887c94ad7b","originalAuthorName":"卢亚锋"},{"authorName":"李金山","id":"8e42c626-208a-4f90-80c0-0f775920a7d8","originalAuthorName":"李金山"},{"authorName":"李成山","id":"afa1b4a9-f229-4165-8d87-4a5e57c06514","originalAuthorName":"李成山"},{"authorName":"唐先德","id":"5c1c7070-4bfe-4a81-a452-4e0469574f8a","originalAuthorName":"唐先德"}],"doi":"","fpage":"1","id":"f2f69d65-5d79-401e-b465-abcecf8cdf3a","issue":"12","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"2b6d2c4b-7f48-49c2-aaf9-b8149d56d58a","keyword":"Nb3Sn","originalKeyword":"Nb3Sn"},{"id":"de3fff97-09f4-4d60-aa8c-bcff6e4b2fe3","keyword":"HEP","originalKeyword":"HEP"},{"id":"8185a678-dc10-4ea5-9358-221202dd5aa7","keyword":"ITER","originalKeyword":"ITER"},{"id":"517533dc-29a1-4de6-aca2-706c69aa79ed","keyword":"超导特性","originalKeyword":"超导特性"},{"id":"8dc7a86f-3de7-4c48-877e-accb30956031","keyword":"制备工艺","originalKeyword":"制备工艺"}],"language":"zh","publisherId":"cldb200612001","title":"磁体用Nb3Sn超导体研究进展","volume":"20","year":"2006"},{"abstractinfo":"ITER聚变反应堆上Nb3Sn超导股线是由脆性金属间化合物构成的,由于其间各组分不同的热胀冷缩系数和不同的弹性模量,使得股线从热反应温度或热处理温度到室温、以至到低温运行时,会在Nb3Sn复合物中产生热应变.为了研究Nb3Sn的热应变和构建相应的数学模型,进行了加热期间局部应变测量以及室温下的拉力测试.根据Nb3Sn股线不同组分应力/应变曲线所显示的弹塑特性,对它们进行量化分析.测试分析发现,在室温下沿轴向加载到Nb3Sn超导丝的局部应变是压缩应变,高温下是拉应变;另外用数值分析计算方法可以再现依靠温度的轴向热应变.","authors":[{"authorName":"蒋华伟","id":"6c819fc2-cd5d-448b-bd19-f14d3a2abbfe","originalAuthorName":"蒋华伟"},{"authorName":"武松涛","id":"527fb712-7dff-4c15-aa1e-a1efcec24f20","originalAuthorName":"武松涛"}],"doi":"","fpage":"1372","id":"91fc7b9a-fdae-418e-89f3-fef1a565b287","issue":"6","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"957e2543-811d-4391-a1c5-9982b5438eac","keyword":"Nb3Sn","originalKeyword":"Nb3Sn"},{"id":"357db27b-4063-48a3-b76b-27faa472b0f6","keyword":"股线","originalKeyword":"股线"},{"id":"4698f945-3ea7-4066-a7f1-958f6c78eae4","keyword":"CICC (Cable-in-conduit conductor)","originalKeyword":"CICC (Cable-in-conduit conductor)"},{"id":"6f649194-73a6-4533-96c9-76dc3ef1d30e","keyword":"热应变","originalKeyword":"热应变"}],"language":"zh","publisherId":"xyjsclygc201406020","title":"Nb3Sn超导股线热应变分析模型研究","volume":"43","year":"2014"},{"abstractinfo":"随着超导磁体的不断开发应用,对高临界电流密度超导材料的需求不断增长,以金属间化合物为基体的超导材料Nb3Sn具有特殊的实际意义,其制成的导体临界性能高于NbTi导体,Nb3Sn股线也是ITER磁体的关键组成部分.为了选择超导磁体合适的运行参数以及确定其稳定运行的范围,了解其超导特性是必要的.根据磁体设计所用标准,磁体运行时性能与股线的性能密切相关.本文介绍了一种测试Nb3Sn股线临界性能的方法,实验采用四引线法进行,测试中对样品提供了一个垂直方向的背景磁场,其大小可从0 T变化到16 T,实验时样品置于变温杜瓦内,温度调节通过控制进入变温杜瓦的氦气量来实现,可使温度变化小于0.01 K.对测试结果运用Summer定理进行了拟合并加以分析.","authors":[{"authorName":"刘方","id":"58a3d899-9300-4f66-9da0-30e813447409","originalAuthorName":"刘方"},{"authorName":"翁佩德","id":"72956b6c-e914-45bb-ad8b-41a039e66f96","originalAuthorName":"翁佩德"},{"authorName":"武玉","id":"3a986a7a-86b3-4b5c-b7fa-a4b9fe3d015c","originalAuthorName":"武玉"},{"authorName":"谭运飞","id":"014b2ed9-5222-400d-9c6c-1030a6baa505","originalAuthorName":"谭运飞"}],"doi":"10.3969/j.issn.1000-3258.2007.01.016","fpage":"68","id":"b33455b8-7d6a-456f-85af-afcd9cea296b","issue":"1","journal":{"abbrevTitle":"DWWLXB","coverImgSrc":"journal/img/cover/DWWLXB.jpg","id":"19","issnPpub":"1000-3258","publisherId":"DWWLXB","title":"低温物理学报 "},"keywords":[{"id":"54c545ea-2f9b-41a4-9ca8-1e18043351e3","keyword":"临界电流密度","originalKeyword":"临界电流密度"},{"id":"c1fedc3a-36ca-4267-a271-4b0a6622970f","keyword":"上临界磁场","originalKeyword":"上临界磁场"},{"id":"38357f31-6d62-4cb6-b1e1-71fbc39f2034","keyword":"Nb3Sn","originalKeyword":"Nb3Sn"},{"id":"9b0b90ce-5242-4697-9cda-e68c694c515d","keyword":"变温杜瓦","originalKeyword":"变温杜瓦"}],"language":"zh","publisherId":"dwwlxb200701016","title":"超导股线Nb3Sn的性能测试研究","volume":"29","year":"2007"}],"totalpage":8883,"totalrecord":88824}