In order to explore the methods to prepare high-strength quasicrystal-reinforced magnesium alloys, the flakes of rapidly solidified Mg-6.4Zn-1.1Y magnesium alloy with thickness of 50-60冚m were obtained by a melt spinning single-roller device, and then the flakes were processed into rods by reciprocating extrusion and direct extrusion. The microstructure of the alloy was analyzed by optical microscope and SEM, and the constituent phases were identified by XRD. Phase transformation and its onset temperature were determined by differential thermal analyzer (DTA). The analysis result shows that rapid solidification for Mg-6.4Zn-1.1Y alloy can inhibit the eutectic reactions, broaden the solid solubility of Zn in 冄-Mg solute solution, and impede the formation of Mg3Y2Zn3 and MgZn2 compounds, and thus help the icosahedral Mg3YZn6 quasicrystal formed directly from the melt. The microstructure of the flakes consists of the -Mg solid solution and icosahedral Mg3YZn6 quasicrystal. Dense rods can be made from the flakes by 2-pass reciprocating extrusion and direct extrusion. The interfaces between flakes in the rods can be welded and jointed perfectly. During the reciprocating extrusion and direct extrusion process, more Mg3YZn6 compounds are precipitated and distributed uniformly, whereas the rods possesses fine microstructures inherited from rapidly solidified flakes. The rods contain only two phases: 冄-magnesium solid solution as matrix and fine icosahedral Mg3YZn6 quasicrystal which disperses uniformly in the matrix.
参考文献
[1] | |
[2] |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%