欢迎登录材料期刊网

材料期刊网

高级检索

基于动态材料模型,建立了TC18钛合金的热加工图,分析了能量耗散率、非稳定参数和热加工图随应变速率、变形温度的变化规律。结果表明,在800~900℃范围内,应变速率对TC18钛合金的热变形能量分配影响较为显著。不同应变下的能量耗散率峰值对应的变形工艺参数均为变形温度800~820℃、应变速率5×10-4~1×10-3 s-1,该参数即为TC18钛合金等温压缩变形的最佳工艺参数范围。随着应变增大,820℃/1×10-2 s-1附近的非稳定变形区域逐渐缩小,当应变达到0.3时消失;而(860~900)℃/(1~10)s-1的非稳定区随应变增大而逐渐扩大,并向低温区域扩展。

The processing map for TC18 titanium alloy was established based on dynamic materials modeling.The influences of strain rate and deformation temperature on the energy dissipation rates, instability parameters and thermal processing maps were analyzed.The results show that, in the range of 800℃to 900℃, strain rate has a significant effect on the energy distribution of TC18 titanium alloy.The deformation process parameters corresponding to peak power dissipation efficiency at different strain rate were all in range of 5 ×10-4 s-1 to 1 ×10-3 s-1 at 800℃to 820℃, namely the better technological parameter range of isothermal compression deformation for TC18 titanium alloy.As the strain increases, the area of instability near the range of 820 ℃/1 ×10 -2 s-1 gradually reducs, which enteres the stage of steady state flow when the strain reaches 0.3.The area of instability in the range of 1 s-1 to 10 s-1 at 860℃to 900 ℃gradually expands to the lower temperature region with the strain rate maintains between 1 s-1 to 10 s-1 along with the strain increases.

参考文献

[1] 黄伯云.中国材料工程大典:第4卷有色金属材料加工[M].北京:化学工业出版社,2005:623-626.
[2] 曾卫东,周义刚,周军,俞汉清,张学敏,徐斌.加工图理论研究进展[J].稀有金属材料与工程,2006(05):673-677.
[3] Guoliang Ji;Fuguo Li;Qinghua Li;Huiqu Li;Zhi Li .Development and validation of a processing map for Aermet100 steel[J].Materials Science & Engineering. A, Structural Materials: Properties, Misrostructure and Processing,2010(4/5):1165-1171.
[4] G. S. Avadhani .Optimization of Process Parameters for the Manufacturing of Rocket Casings: A Study Using Processing Maps[J].Journal of Materials Engineering and Performance,2003(6):609-622.
[5] 鲁世强,李鑫,王克鲁,董显娟,李臻熙,曹春晓.基于动态材料模型的材料热加工工艺优化方法[J].中国有色金属学报,2007(06):890-896.
[6] Prasad Y V R K;Gegel H L;Doraivelu S M et al.Model-ing of dynamic material behavior in hot deformation:forging of Ti-6242[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1984,15(10):1883-1892.
[7] Prasad Y V R K .Recent advances in the science of mechani-cal processing[J].Indian Journal of Technology,1990,28(6/8):435-451.
[8] Ziegler H.Progress in Solid Mechanics:Vol 4[M].New York:John Wiley & Sons,1963:93-193.
[9] Prasad Y V R K;Sasidhara S.Hot Working Guide:A Com-pendium of Processing Maps[M].Ohio:American Society for Metals,1997:3-97.
[10] 张永强,郭鸿镇,刘瑞,王涛,赵张龙,姚泽坤.TC18合金β相区等温锻造显微组织和力学性能[J].稀有金属材料与工程,2013(03):634-638.
[11] 张永强 .TC18合金锻造工艺参数及高温塑性变形行为研究[D].西安:西北工业大学,2012.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%