采用液态混合、固相反应相结合制备了锂离子电池正极材料Li2FeSiO4/C,研究了合成温度对材料结构和电化学性能的影响.利用X射线衍射(XRD)、扫描电镜(SEM)和恒流充放电,电化学交流阻抗(EIS)等测试方法对材料的结构、表观形貌及电化学性能进行表征.考察焙烧温度对Li2FeSiO4/C材料合成及其性能的影响.结果表明:650℃的样品在25℃以0.1C进行恒流充放电,其首次放电容量为103.31 mAh/g,10次循环后的比容量为81.35mAh/g.
参考文献
[1] | Padhi AK.;Goodenough JB.;Nanjundaswamy KS. .PHOSPHO-OLIVINES AS POSITIVE-ELECTRODE MATERIALS FOR RECHARGEABLE LITHIUM BATTERIES[J].Journal of the Electrochemical Society,1997(4):1188-1194. |
[2] | Yong-Nian Xu;Sung-Yoon Chung;Jason T. Bloking .Electronic Structure and Electrical Conductivity of Undoped LiFePO_4[J].Electrochemical and solid-state letters,2004(6):A131-A134. |
[3] | Takahashi M.;Tobishima S.;Takei K.;Sakurai Y. .Reaction behavior of LiFePO4 as a cathode material for rechargeable lithium batteries[J].Solid state ionics,2002(3/4):283-289. |
[4] | A.S.Andersson;J.O.Thomas .The source of first-cycle capacity loss in LiFePO_4[J].Journal of Power Sources,2001(0):498-502. |
[5] | Nishimura SI;Hayase S;Kanno R;Yashima M;Nakayama N;Yamada A .Structure of Li2FeSiO4[J].Journal of the American Chemical Society,2008(40):13212-13213. |
[6] | K.S. Nanjundaswamy;A.K. Padhi;J.B. Goodenough;S. Okada;H. Ohtsuka;H. Arai;J. Yamaki .Synthesis, redox potential evaluation and electrochemical characteristics of NASICON-related-3D framework compounds[J].Solid state ionics,1996(1/2):1-10. |
[7] | Padhi AK.;Masquelier C.;Goodenough JB.;Nanjundaswamy KS. .MAPPING OF TRANSITION METAL REDOX ENERGIES IN PHOSPHATES WITH NASICON STRUCTURE BY LITHIUM INTERCALATION[J].Journal of the Electrochemical Society,1997(8):2581-2586. |
[8] | 聚阴离子型锂离子电池正极材料研究进展[J].化学进展,2005(04):604-613. |
[9] | Nyten A;Abouimrane A;Armand M;Gustafsson T;Thomas JO .Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material[J].Electrochemistry communications,2005(2):156-160. |
[10] | Nyten A;Kamali S;Haggstrom L;Gustafsson T;Thomas JO .The lithium extraction/insertion mechanism in Li2FeSiO4[J].Journal of Materials Chemistry: An Interdisciplinary Journal dealing with Synthesis, Structures, Properties and Applications of Materials, Particulary Those Associated with Advanced Technology,2006(23):2266-2272. |
[11] | Nyten A;Stjerndahl M;Rensmo H;Siegbahn H;Armand M;Gustafsson T;Edstrom K;Thomas JO .Surface characterization and stability phenomena in Li2FeSiO4 studied by PES/XPS[J].Journal of Materials Chemistry: An Interdisciplinary Journal dealing with Synthesis, Structures, Properties and Applications of Materials, Particulary Those Associated with Advanced Technology,2006(34):3483-3488. |
[12] | Dominko R;Bele M;Gaberscek M;Meden A;Remskar M;Jamnik J .Structure and electrochemical performance of Li2MnSiO4 and Li2FeSiO4 as potential Li-battery cathode materials[J].Electrochemistry communications,2006(2):217-222. |
[13] | R. Dominko;D.E. Conte;D. Hanzel;M. Gaberscek;J. Jamnik .Impact of synthesis conditions on the structure and performance of Li_2FeSiO_4[J].Journal of Power Sources,2008(2):842-847. |
[14] | Boulineau, A.;Sirisopanaporn, C.;Dominko, R.;Armstrong, A.R.;Bruce, P.G.;Masquelier, C. .Polymorphism and structural defects in Li_2FeSiO_4[J].Dalton transactions: An international journal of inorganic chemistry,2010(27):6310-6316. |
[15] | Xiaobing Huang;Xing Li;Haiyan Wang;Zhonglai Pan;Meizhen Qu;Zuolong Yu .Synthesis and electrochemical performance of Li_2FeSiO_4/carbon/carbon nano-tubes for lithium ion battery[J].Electrochimica Acta,2010(24):7362-7366. |
[16] | Sirisopanaporn, C.;Boulineau, A.;Hanzel, D.;Dominko, R.;Budic, B.;Armstrong, A.R.;Bruce, P.G.;Masquelier, C. .Crystal structure of a new polymorph of Li_2FeSiO_4[J].Inorganic Chemistry: A Research Journal that Includes Bioinorganic, Catalytic, Organometallic, Solid-State, and Synthetic Chemistry and Reaction Dynamics,2010(16):7446-7451. |
[17] | 吕东平,王琳,杨勇.锂离子电池正硅酸盐正极材料研究进展[J].电化学,2011(02):161-168. |
[18] | Zhang, M.;Xi, Z.;Hou, Y.;Chen, Q. .One-step hydrothermal synthesis of Li _2FeSiO _4/C composites as lithium-ion battery cathode materials[J].Journal of Materials Science,2012(5):2328-2332. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%