人工晶体学报, 2011, 40(1): 207-212.
多片式热壁 MOCVD 反应器的设计与数值模拟分析
彭鑫鑫 1, , 左然 2, , 于海群 {"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"以单分散的苯乙烯-甲基丙烯酸甲酯共聚物(P(St-co-MMA))微球为载体,FeC13·6H2O和FeSO4·7H2O为前驱体,用反相共沉淀法制备了Fe3O4/P(St-co-MMA)微纳米原位复合物.使用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、傅里叶红外光谱仪(FTIR)、X射线衍射仪(XRD)、振动样品磁强计(VSM)以及氮吸附/脱附等温线等手段对Fe3O4/P(St-co-MMA)的形貌、结构、磁性能、孔径、孔体积和比表面积进行了表征.结果表明,纳米级Fe3O4已经成功地负载在微米级P(St-co-MMA)的表面.在制备的Fe3O4/P(St-co-MMA)微纳米复合物中有介孔,其平均孔径、孔体积和比表面积分别为15.41nm、0.15953 cm3/g和32.82 m2/g.Fe3O4/P(St-co-MMA)微纳米复合物具有超顺磁性和较好的磁响应性,能满足固液相磁分离的要求.","authors":[{"authorName":"雷文娟","id":"f1ab4711-7c13-4ec8-ba8e-4934024ee6c1","originalAuthorName":"雷文娟"},{"authorName":"马应霞","id":"c46da520-9b9a-4e7c-8e3d-0d65a69a4600","originalAuthorName":"马应霞"},{"authorName":"喇培清","id":"2accd5be-7a5f-41b2-b0e4-43d9661374ff","originalAuthorName":"喇培清"},{"authorName":"刘二燕","id":"f49277d5-f17c-4722-8213-619139b75f47","originalAuthorName":"刘二燕"},{"authorName":"李向前","id":"ef9b4eb5-28af-4dcc-8700-f09e8d4bbd55","originalAuthorName":"李向前"},{"authorName":"张文娟","id":"839de0b0-aecf-4aff-8686-9d69a3751f22","originalAuthorName":"张文娟"}],"doi":"10.11901/1005.3093.2015.184","fpage":"711","id":"9499e8a2-4cd4-44ea-8677-741a040dcc7c","issue":"9","journal":{"abbrevTitle":"CLYJXB","coverImgSrc":"journal/img/cover/CLYJXB.jpg","id":"16","issnPpub":"1005-3093","publisherId":"CLYJXB","title":"材料研究学报"},"keywords":[{"id":"33d0a93f-22b9-4ee1-bbd7-fa68ec37f543","keyword":"磁性材料","originalKeyword":"磁性材料"},{"id":"557d23e2-70f3-4ac3-8e19-b869160317d3","keyword":"Fe3O4/P(St-co-MMA)","originalKeyword":"Fe3O4/P(St-co-MMA)"},{"id":"6cab0b25-4d60-4a50-b2fd-8c5177f51fd9","keyword":"反相共沉淀法","originalKeyword":"反相共沉淀法"},{"id":"09f5f432-bb8a-4867-a62c-6cd0169049b7","keyword":"超顺磁性","originalKeyword":"超顺磁性"},{"id":"7397c0cb-e440-4808-9aeb-cc9bf2f61334","keyword":"微纳米复合物","originalKeyword":"微纳米复合物"}],"language":"zh","publisherId":"clyjxb201609011","title":"磁性Fe3O4/P(St-co-MMA)微纳米复合物的制备和性能","volume":"30","year":"2016"},{"abstractinfo":"采用共沉淀法将Nd3+取代的Fe3O4与纳米石墨微片(NanoG)复合得到复合物NdxFe3-xO4/NanoG.通过SEM、LPSA、EDS、XRD和FTIR等对该复合物的结构进行了表征.当x=0.06时,Nd0.06Fe2.94O4具有尖晶石结构,其粒径主要分布在70~80 nm间.VSM的测试表明:Nd0.06Fe2.94O4为软磁性铁氧体,具有较高的饱和磁化强度(Ms =43.74 emu/g),与NanoG复合后,饱和磁化强度下降到39.45 emu/g.对电磁参数的测试表明:当x=0.06,Nd0.06Fe2.94O4与NanoG的质量比为4∶1时,在X波段(8.2~12.4 GHz),Nd0.06Fe2.94O4/NanoG在11.90 GHz处的最小损耗为Rmin=-17.13 dB,具有较好的微波吸收性能.","authors":[{"authorName":"张欣欣","id":"26c220af-2768-4dff-a6d8-5370c81f486c","originalAuthorName":"张欣欣"},{"authorName":"齐暑华","id":"4578e348-c390-4249-9fe1-2b59ca91db04","originalAuthorName":"齐暑华"},{"authorName":"邱华","id":"7b2585ad-1647-435b-a657-acd65c138f13","originalAuthorName":"邱华"},{"authorName":"杨永清","id":"ea8d46fc-054b-47dd-b644-d2e5457f12e5","originalAuthorName":"杨永清"},{"authorName":"何征","id":"0b573d7d-b497-4ca5-9bca-d434017d2319","originalAuthorName":"何征"}],"doi":"","fpage":"10","id":"be914c5b-c117-4e42-b682-e50a526d69f6","issue":"20","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"2a382972-837b-49ac-aaa5-8b164470e02e","keyword":"Nd3+取代","originalKeyword":"Nd3+取代"},{"id":"ffcade85-8cd6-4955-803c-172376e9cfec","keyword":"纳米复合材料","originalKeyword":"纳米复合材料"},{"id":"2aaede73-820e-4a1a-977c-f8886e28a564","keyword":"微观结构","originalKeyword":"微观结构"},{"id":"716f1086-4be5-4fcb-9714-1819236fafd1","keyword":"饱和磁化强度","originalKeyword":"饱和磁化强度"},{"id":"9b390d70-4e71-4766-b466-ead8770f63ef","keyword":"微波吸收性能","originalKeyword":"微波吸收性能"}],"language":"zh","publisherId":"cldb201320004","title":"Nd3+取代铁氧体与纳米石墨微片复合物的合成及性能研究","volume":"27","year":"2013"},{"abstractinfo":"为实现制备出导电性能优良的有机透明导电涂层,需要把具有导电性的碳纳米管在树脂中组装成一体化导电结构网络.运用可以在树脂中自组装的导电聚乙撑二氧噻吩和聚苯胺来实现碳纳米管自组装的方法,分别合成出了导电聚乙撑二氧噻吩和聚苯胺薄膜均匀覆盖的碳纳米管/聚乙撑二氧噻吩复合物与碳纳米管/聚苯胺纳米复合物,并运用透射电镜(TEM)、傅立叶红外光谱(FTIR)和四探针法对其进行了分析与表征,结果发现这种复合物的导电性较碳纳米管和聚乙撑二氧噻吩以及聚苯胺自身导电性都有一定程度的提高.","authors":[{"authorName":"哈恩华","id":"f5185c6f-65c2-4d9a-b71e-1e30130c619f","originalAuthorName":"哈恩华"},{"authorName":"黄大庆","id":"9f440e65-30b9-48d8-b82d-b0795b94304f","originalAuthorName":"黄大庆"},{"authorName":"哈恩平","id":"9569d16a-fa79-4ebb-a80d-82e909d4e11e","originalAuthorName":"哈恩平"},{"authorName":"王智勇","id":"cb808d65-a0f5-42a6-8ef8-825f2a286d95","originalAuthorName":"王智勇"},{"authorName":"丁鹤雁","id":"70ab5f33-cd8d-499d-af73-223a280b1eb3","originalAuthorName":"丁鹤雁"}],"doi":"10.3969/j.issn.1001-4381.2008.10.032","fpage":"122","id":"4bea1854-7fc3-441a-b35a-cea33b877c21","issue":"10","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"8068c960-2469-42c1-90f1-ce4f5cde88cd","keyword":"碳纳米管","originalKeyword":"碳纳米管"},{"id":"e53a39ed-6e54-4123-be91-a3bb308cf27d","keyword":"纳米复合物","originalKeyword":"纳米复合物"},{"id":"79e69821-04f3-4ea4-94d7-60b6b27a3754","keyword":"导电聚合物","originalKeyword":"导电聚合物"}],"language":"zh","publisherId":"clgc200810032","title":"碳纳米管/导电聚合物纳米复合物的合成与表征","volume":"","year":"2008"},{"abstractinfo":"应用W/O型微乳液法制备了纳米量级超细铁-镍复合物微粒。X射线和透射、扫描电镜测试表明:它属于表面活性剂包裹型超细微粒。粒径<30nm,密度2.89g/cm3的Ni-Fe微粒,比饱和磁化强度σs=13~16Am2/kg,娇顽力Hc=87~123 Oe,剩磁Br=2.25~3.00Am2/kg,矫顽力较大,剩磁也较大,说明该超细复合微粒具有硬磁体的性质。X射线能谱分析表明,有部分Ni-Fe合金相形成。","authors":[{"authorName":"张朝平","id":"fe1a3bd5-0235-43b0-9dbc-4b73354a04a8","originalAuthorName":"张朝平"},{"authorName":"邓伟","id":"8b6de815-66dd-49c8-a6a0-964cd97b237f","originalAuthorName":"邓伟"},{"authorName":"胡林","id":"8e7e785a-ca5d-4ba8-9bf4-b066fa8831ae","originalAuthorName":"胡林"},{"authorName":"罗玉萍","id":"28b20121-b8db-4b95-bb0f-1514d7d34e82","originalAuthorName":"罗玉萍"},{"authorName":"胡宗超","id":"ac676d0a-661d-4445-8def-7e7b21fb24b4","originalAuthorName":"胡宗超"},{"authorName":"高翔","id":"97add064-b5f6-43ef-b8dd-66ef928a16df","originalAuthorName":"高翔"},{"authorName":"申德君","id":"1bc91099-c0c7-44ff-b84d-a03bf5271164","originalAuthorName":"申德君"}],"doi":"10.3321/j.issn:1000-324X.2001.03.016","fpage":"481","id":"449d46aa-1b9e-4b78-8c32-177cfef07e44","issue":"3","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"ebc038a2-c71f-49e5-a4d7-8596688c1bb0","keyword":"微乳液","originalKeyword":"微乳液"},{"id":"82aff661-965f-4e22-a97a-ec839f9d3cbb","keyword":"铁-镍复合物","originalKeyword":"铁-镍复合物"},{"id":"5ab70d1b-ce9e-4717-b21e-5a85df4a4108","keyword":"超细微粒","originalKeyword":"超细微粒"},{"id":"a2b6d6bb-612b-4d23-82fd-b46eb86e38ab","keyword":"X射线","originalKeyword":"X射线"},{"id":"f5301c5d-827a-4a0d-ae33-b9d5db6c5927","keyword":"透射电镜","originalKeyword":"透射电镜"}],"language":"zh","publisherId":"wjclxb200103016","title":"微乳液法制备超细Ni-Fe复合物微粒","volume":"16","year":"2001"},{"abstractinfo":"采用原位聚合方法制备了聚酰亚胺/纳米二氧化钛(TiO2)复合物,用 TEM、 FTIR研究了其形态结构及纳米颗粒在复合物中的分散性,用红外光谱验证了复合物中纳米颗粒的存在,同时分析研究了纳米复合物的机械、介电性能,结果表明:纳米颗粒在复合物中分散性良好;纳米 TiO2的加入导致纳米复合物的常规机械、介电性能下降,但随着纳米 TiO2含量的增加,复合材料的耐电晕能力和拉伸强度得到了提高.","authors":[{"authorName":"樊友兵","id":"aacd2374-67c7-4888-8aec-36acc7e9a055","originalAuthorName":"樊友兵"},{"authorName":"李鸿岩","id":"9a2843de-9b1c-4aeb-bf91-a8b3b1c7ba97","originalAuthorName":"李鸿岩"},{"authorName":"周升","id":"b800fe67-f623-4e75-869f-3b88de3622a4","originalAuthorName":"周升"},{"authorName":"刘斌","id":"f9a1b994-acb0-4b81-8cba-95f127b2b42e","originalAuthorName":"刘斌"},{"authorName":"陈寿田","id":"d7fa757c-d37b-410a-a333-646fe57c0f91","originalAuthorName":"陈寿田"}],"doi":"10.3969/j.issn.1009-9239.2004.03.008","fpage":"22","id":"8e2e952d-431d-4e04-a9c1-19ff2311e441","issue":"3","journal":{"abbrevTitle":"JYCL","coverImgSrc":"journal/img/cover/JYCL.jpg","id":"50","issnPpub":"1009-9239","publisherId":"JYCL","title":"绝缘材料"},"keywords":[{"id":"552b455a-13e1-4bb3-9b1d-1cd9ce7042fb","keyword":"聚酰亚胺","originalKeyword":"聚酰亚胺"},{"id":"afd7ae25-d79f-430b-8f1c-9e0f4062ac8b","keyword":"纳米复合材料","originalKeyword":"纳米复合材料"},{"id":"8d974553-a131-455d-81cc-def2e9363bdb","keyword":"耐电晕","originalKeyword":"耐电晕"}],"language":"zh","publisherId":"jycltx200403008","title":"聚酰亚胺 /纳米二氧化钛复合物的合成与性能研究","volume":"37","year":"2004"},{"abstractinfo":"以Y2O3胶体作粒子分散剂合成了在水中胶体分散的PAn-Y2O3纳米复合物,用透射电镜、红外光谱、拉曼光谱、导电测试仪等对所得复合物进行表征,结果表明,电镜下观察到复合物呈\"蛋糕-花生米\"状,复合物的导电率比掺杂态的聚苯胺低.红外和拉曼光谱分析表明,聚苯胺与氧化钇之间有化学键的结合.","authors":[{"authorName":"范颖","id":"fb9a5241-f134-4b8a-a176-6abd9413c925","originalAuthorName":"范颖"},{"authorName":"刘丽敏","id":"d63ef6b7-de20-4f0f-ae65-33010b2f1eb6","originalAuthorName":"刘丽敏"},{"authorName":"李长江","id":"f3d6fbef-3d19-451a-a0a1-95adf9d1b98e","originalAuthorName":"李长江"}],"doi":"","fpage":"70","id":"a0972743-b01f-42b9-9d55-267910aad6b0","issue":"3","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"9b5c51d0-b7a6-4c22-85dc-dac23a3b8346","keyword":"聚苯胺","originalKeyword":"聚苯胺"},{"id":"90b61a4c-586e-4a67-a607-8353e154cf82","keyword":"氧化钇胶体","originalKeyword":"氧化钇胶体"},{"id":"4cdeff99-62fc-400a-8aad-9f6d5defe439","keyword":"纳米复合物","originalKeyword":"纳米复合物"}],"language":"zh","publisherId":"gfzclkxygc200503016","title":"胶体分散的聚苯胺/氧化钇纳米复合物的合成与表征","volume":"21","year":"2005"},{"abstractinfo":"采用特殊的表面修饰技术,制备了纳米级分散的乙二醇-TiO2溶胶,并用离心沉降的方法研究了表面修饰对TiO2表面性质的影响.通过双螺杆共混挤出制备了聚酰胺-6/纳米TiO2复合物,用SEM研究了复合物的微细两相结构.研究了复合物的可纺性,成功制备了含有纳米TiO2的功能性聚酰胺-6纤维,并对其功能性进行了研究.研究发现:与纳米TiO2复合后,PA6纤维的力学性能有所提高,复合物中纳米单元尺寸为64.2 nm,功能性纤维中纳米单元尺寸为68.4 nm,纤维的法向比辐射率(远红外辐射率)达86%.","authors":[{"authorName":"何厚康","id":"d7ba8a90-5da5-42d3-bbb0-58c699e5c9c0","originalAuthorName":"何厚康"},{"authorName":"张瑜","id":"a941a971-78e5-4134-94e5-7ea856813135","originalAuthorName":"张瑜"},{"authorName":"吴文华","id":"9ef7dc0c-5ca0-4795-b63e-00801df4d3af","originalAuthorName":"吴文华"},{"authorName":"蒋翀","id":"bcf7f601-f952-40fc-af17-4d8ec8d9ea00","originalAuthorName":"蒋翀"},{"authorName":"朱美芳","id":"06a5c0b9-9e30-4738-b4d7-54f9adf07768","originalAuthorName":"朱美芳"},{"authorName":"陈彦模","id":"aeaf0d24-6407-4e4f-8407-1fdb5a8eac6d","originalAuthorName":"陈彦模"}],"doi":"","fpage":"214","id":"3cb517cc-e0c4-4839-bf2e-74f5fc6f6f13","issue":"6","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"b14df2ed-2662-42e4-a333-a1d9e43d17a6","keyword":"纳米二氧化钛","originalKeyword":"纳米二氧化钛"},{"id":"a764e331-08c1-4b90-81ff-ea76190df851","keyword":"聚酰胺-6","originalKeyword":"聚酰胺-6"},{"id":"780ff074-490f-4636-807d-a8a409063552","keyword":"表面修饰","originalKeyword":"表面修饰"},{"id":"259f512f-bce2-44c4-92c4-65caced76555","keyword":"可纺性","originalKeyword":"可纺性"},{"id":"cdbd5ef4-f0c8-4449-a837-4025916f5435","keyword":"远红外辐射","originalKeyword":"远红外辐射"}],"language":"zh","publisherId":"gfzclkxygc200406055","title":"PA6/纳米TiO2复合物的制备及成纤性能","volume":"20","year":"2004"},{"abstractinfo":"以TiOSO4为钛源,采用阳离子交换、原位水解、原位脱羟技术制备了TiO2/蛭石纳米复合物.采用XRD、FTIR、FSEM等对TiO2/蛭石纳米复合物制备过程产物包括聚合羟基钛离子-蛭石、水合氧化钛/蛭石复合物以及TiO2/蛭石纳米复合物的结构、微观形貌等进行了表征和研究.结果表明:在pH值较低时,TiOSO4溶液中的聚合羟基钛离子通过阳离子交换作用进入蛭石层间域中,随着pH值逐渐升高,进入层间域中的聚合羟基钛离子水解聚合形成水合氧化钛,蛭石的层间域被撑大,有序性结构被破坏;经900℃热处理后水合氧化钛脱水形成TiO2/蛭石纳米复合物;样品中TiO2含量随结束pH值的升高而增加,并均匀地插入蛭石的层间域中或分布在蛭石片层的表面;与纯TiO2纳米粉体相比较,TiO2/蛭石纳米复合物结构中TiO2在900℃焙烧后仍未出现金红石相,表明蛭石结构层对TiO2的晶相转变具有明显的阻滞作用.","authors":[{"authorName":"罗利明","id":"60d2bf50-bdaa-40c6-bf4e-be7d0837349d","originalAuthorName":"罗利明"},{"authorName":"彭同江","id":"7ba9a385-bed7-486b-9f34-44c28ada4d11","originalAuthorName":"彭同江"},{"authorName":"孙红娟","id":"367fc7b0-ed6f-4b43-8593-b1fd78fd48a5","originalAuthorName":"孙红娟"},{"authorName":"李莉","id":"739e8aea-ee5d-4897-bce7-127483991ecb","originalAuthorName":"李莉"}],"doi":"","fpage":"1568","id":"51333fb5-fce3-48c2-8615-3633e69522e7","issue":"6","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"57a07182-3f30-4b22-8c84-34acbbcc3210","keyword":"聚合羟基钛离子","originalKeyword":"聚合羟基钛离子"},{"id":"d3dcbf83-2b7e-4080-90ca-3e47537567a1","keyword":"TiO2/蛭石纳米复合物","originalKeyword":"TiO2/蛭石纳米复合物"},{"id":"ed67471f-1377-46a2-8ed6-61d92aa08562","keyword":"晶相转变","originalKeyword":"晶相转变"}],"language":"zh","publisherId":"rgjtxb98201406047","title":"TiO2/蛭石纳米复合物的制备及产物结构变化研究","volume":"43","year":"2014"},{"abstractinfo":"基于自主合成的聚磷酸铵-钙基蒙脱土纳米复合物(APP-CaMMT),采用熔融共混法制备了纳米复合物APP-CaMMT阻燃聚丙烯样品.通过热重分析、锥形量热仪分析、极限氧指数和垂直燃烧测试表征其阻燃性能.研究表明,纳米复合物APP-CaMMT相比APP与CaMMT的微米混合物,显著提高了对聚丙烯的阻燃效率.通过对UL94的模拟假设,实现了4种测试方法间的线性相关性分析.分析认为,对于不同类型的阻燃聚丙烯样品,只有通过多种测试手段综合分析,才能更准确判断其阻燃性能.","authors":[{"authorName":"仪德启","id":"9e00f058-cb3d-4456-b6c5-7ed7f39495f8","originalAuthorName":"仪德启"},{"authorName":"叶春雪","id":"baf200f8-0d6d-4965-8640-13d7f12740d6","originalAuthorName":"叶春雪"},{"authorName":"杨荣杰","id":"f67336fb-8632-4957-8a27-6a0ed9c4408f","originalAuthorName":"杨荣杰"}],"doi":"","fpage":"51","id":"c3c496fb-df6d-4477-b9a9-452022c7a7fa","issue":"2","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"56e08075-7ff4-49e2-a400-2f06d19141a7","keyword":"纳米复合","originalKeyword":"纳米复合"},{"id":"59632c77-5f2e-47cf-ab56-9737c18d7835","keyword":"聚磷酸铵","originalKeyword":"聚磷酸铵"},{"id":"3620b1a8-2298-4449-aac3-72bc95319dd5","keyword":"蒙脱土","originalKeyword":"蒙脱土"},{"id":"bbac64ed-4fe1-43d4-8f20-157e4e35b46d","keyword":"聚丙烯","originalKeyword":"聚丙烯"},{"id":"a0c4758c-64d7-4ad1-8605-6da50e11b293","keyword":"阻燃","originalKeyword":"阻燃"}],"language":"zh","publisherId":"gfzclkxygc201402011","title":"聚磷酸铵-钙基蒙脱土纳米复合物阻燃聚丙烯","volume":"30","year":"2014"},{"abstractinfo":"以碳纳米管(Carbon nanotubes,CNTs)为载体、乙二醇和甲酸钠为还原剂,采用浸渍法制备了不同Pt/Sn原子比的(Pt/Sn)-CNT复合物.通过X-射线衍射(XRD)和透射电子显微镜(TEM)对碳纳米管负载金属颗粒过程中的显微结构变化进行了研究.结果表明:Pt、Sn粒子在碳纳米管上高度分散,粒径分布在3.5nm~6.5nm之间,Sn元素以Pt-Sn合金和SnO2结构存在.循环伏安(CV)测试表明:Pt/Sn原子比为2.5:1~3.5:1时,(Pt/Sn)-CNT复合物的催化活性和抗毒化能力最佳.(Pt/Sn)-CNT复合物中CNTs保持了完整结构,对Pt、Sn粒子起到了稳定性作用,有利于提升(Pt/Sn)-CNT复合物对甲醇的氧化活性.","authors":[{"authorName":"闫学杰","id":"cd407499-825e-4f8c-afef-451525a19a02","originalAuthorName":"闫学杰"},{"authorName":"常东军","id":"1db95e9f-8ecd-4523-b33d-360fb70fc70a","originalAuthorName":"常东军"},{"authorName":"李智辉","id":"eb22a3ea-9cd5-41b0-aa57-33e70d90b9a6","originalAuthorName":"李智辉"},{"authorName":"王艳","id":"9e9077e0-e4e9-4fcc-98fb-372dd902f61a","originalAuthorName":"王艳"},{"authorName":"王晓敏","id":"54ba6918-bc4f-4fe3-b6e3-65e29e4027a7","originalAuthorName":"王晓敏"}],"doi":"","fpage":"229","id":"a2ab36a1-9546-4788-8e11-4e8c9abdb5f9","issue":"3","journal":{"abbrevTitle":"XXTCL","coverImgSrc":"journal/img/cover/XXTCL.jpg","id":"70","issnPpub":"1007-8827","publisherId":"XXTCL","title":"新型炭材料"},"keywords":[{"id":"cc3567b0-2d80-463e-8c6e-036943d7278b","keyword":"(Pt/Sn)-碳纳米管","originalKeyword":"(Pt/Sn)-碳纳米管"},{"id":"c5200aeb-0366-4283-ae6b-9ebfd002364b","keyword":"电催化性","originalKeyword":"电催化性"},{"id":"0e0abe21-e46d-4b2a-9315-5068600f324a","keyword":"微观结构","originalKeyword":"微观结构"}],"language":"zh","publisherId":"xxtcl201103012","title":"(Pt/Sn)-碳纳米管复合物的电催化性能","volume":"26","year":"2011"}],"totalpage":8400,"totalrecord":83997}