欢迎登录材料期刊网

材料期刊网

高级检索

在弱还原气氛下采用高温固相法制备Ba0.955Al2-xGaxSi2O8:Eu2+(x=0~1.0)系列荧光粉,研究Ga3+置换Al3+对晶体结构和光谱特性的影响.Ga3+与Al3+以类质同相替代进入BaAl2Si2O8晶格形成连续固溶体,晶胞参数a,b,c,β和晶胞体积V均随Ga3+置换量呈线性增加.宽带激发光谱,覆盖范围为230~400 nm,可拟合成4个峰,表观峰值位于330 nm,基本不随Ga3+置换量变化;随着Ga3+置换量的增加,半高宽从93 nm减小至83 nm.发射光谱位于375~560 nm,可由422和456 nm两峰拟合而成,表观峰值位于434 nm,两拟合峰峰位均随Ga3+置换量呈线性红移,且拟合峰强度比呈线性递减.

参考文献

[1] Blasse G;Wanmaker W L;Vrogt J W T;Bril A .Fluorescence of Eu2+-activated silicates[J].Philips Research Reports,1968,23(02):189.
[2] Barry;Thomas L .Equilibriums and europium (Ⅱ) ion luminescence of subsolidus phases bounded by Ba3MgSi2O8,Sr3MgSi2O8 and Ca3MgSi2O8[J].Journal of the Electrochemical Society,1968,115(07):733.
[3] Moore P B;Paul B;Araki T .Atomic arrangement of merwinite,Ca3Mg[SiO4]2 an unusual dense-packed structure of geophysical interest[J].American Minemlogist,1972,57:1355.
[4] Poort S H M;Reijnhoudt H M;van der Kuip H O T;Blasse G .Luminescence of Eu2+ in silicate host lattices with alkaline earth ions in a row[J].Journal of Alloys and Compounds,1996,241:75.
[5] Huang L H;Zhang X;Liu X G .Studies on luminescence properties and crystallographic sites of Ce3+ in Ca3MgSi2O8[J].Journal of Alloys and Compounds,2000,305:14.
[6] Zhang M;Wang J;Zhang Q H;Ding W J Su Q .Optical properties of Ba2SiO4:Eu2+ phosphor for green light-emitting diode(LED)[J].Materials Research Bulletin,2007,42:33.
[7] 金尚忠,杨翼,沈常宇,唐寅宣,孙柳正.一种可用于白光LED的硅酸盐红光荧光粉发光特性的研究[J].中国稀土学报,2009(03):344-348.
[8] Yonesaki, Y.;Takei, T.;Kumada, N.;Kinomura, N. .Sensitized red luminescence from Ce~(3+), Mn~(2+)-doped glaserite-type alkaline-earth silicates[J].Journal of Solid State Chemistry,2010(6):1303-1308.
[9] Kyeong Youl Jung;Joo Hyun Kim;Yun Chan Kang .Luminescence enhancement of Eu-doped calcium magnesium silicate blue phosphor for UV-LED application[J].Journal of Luminescence: An Interdisciplinary Journal of Research on Excited State Processes in Condensed Matter,2009(6):615-619.
[10] Naik, YP;Mohapatra, M;Dahale, ND;Seshagiri, TK;Natarajan, V;Godbole, SV .Synthesis and luminescence investigation of RE3+ (Eu3+, Tb3+ and Ce3+)-doped lithium silicate (Li2SiO3)[J].Journal of Luminescence: An Interdisciplinary Journal of Research on Excited State Processes in Condensed Matter,2009(10):1225-1229.
[11] Clabau, F;Garcia, A;Bonville, P;Gonbeau, D;Le Mercier, T;Deniard, P;Jobic, S .Fluorescence and phosphorescence properties of the low temperature forms of the MAl2Si2O8 : Eu2+ (M = Ca, Sr, Ba) compounds[J].Journal of Solid State Chemistry,2008(6):1456-1461.
[12] Blasse G;Bril A .Investigation of some Ce-activated phosphors[J].Journal of Chemical Physics,1967,47:5139.
[13] Land K R;Gibbon E F;Tien T Y;Stadler H L .Cathode luminescence of Ce3+ and Eu2+ -activated Alkaline earth feldspars[J].Journal of the Electrochemical Society,1971,118:918.
[14] 姜洪义,姬同坤.Ca/Sr对(Sr2-xCax)MgSi2O7:Eu2+,Dy3+发光性能的影响[J].中国稀土学报,2009(03):379-383.
[15] Hu YS;Zhuang WD;Ye HQ;Zhang SS;Fang Y;Huang XW .Preparation and luminescent properties of (Ca1-xSr,)S : Eu2+ red-emitting phosphor for white LED[J].Journal of Luminescence: An Interdisciplinary Journal of Research on Excited State Processes in Condensed Matter,2005(3):139-145.
[16] Bin Im W;Kim YI;Kang JH;Jeon DY .Luminescent and aging characteristics of blue emitting (Ca1-xMgx)Al2Si2O8 : Eu2+ phosphor for PDPs application[J].Solid State Communications,2005(11):717-720.
[17] Krzmanc M M;Valant M;Suvorov D .The synthesis and microwave dielectric properties of SrxBa1-x Al2Si2PO8 and CayBa1-y Al2Si2O8 ceramics[J].Journal of the European Ceramic Society,2007,27:1181.
[18] 赵文光,田一光,张乔,王飞.Sr2+置换对Eu2+掺杂钙长石晶体结构和光谱特性的影响[J].中国稀土学报,2010(03):280-286.
[19] 顾学民.无机化学丛书[M].北京:科学出版社,1998:422,518.
[20] Griffen D A;Ribbe P H .Refinement of the crystal structure of celsian[J].American Mineralogist,1976,61:414.
[21] Dorenbos P. .Energy of the first 4f(7)-> 4f(6)5d transition of Eu2+ in inorganic compounds [Review][J].Journal of Luminescence: An Interdisciplinary Journal of Research on Excited State Processes in Condensed Matter,2003(4):239-260.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%