欢迎登录材料期刊网

材料期刊网

高级检索

采用光学显微镜(OM)、扫描电镜(SEM)、透射电镜(TEM)、X射线衍射和室温拉伸研究固溶制度对1933铝合金自由锻件组织和力学性能的影响.结果表明:由于Al_3Zr粒子对晶界的钉扎作用,在470 ℃以下固溶时,合金的再结晶程度很低(<15%);随着固溶温度升高,再结晶程度逐渐上升;510 ℃固溶时,合金的再结晶程度显著增大(约为48%);1933铝合金锻件中第二相主要有Al_7Cu_2Fe相和η相;合金经470 ℃固溶60 min后,η相溶解比较充分,此后随温度升高或时间延长第二相变化不大;合金的最佳固溶制度为470 ℃、60 min,在此条件下合金具有最好的力学性能.

The effects of solution treatment on microstructures and properties of the aged 1933 aluminum alloy forgings were investigate by optical microscopy (OM), scanning electron microscopy (SEM), transmission electrical microscopy (TEM), X-ray diffractometry and tensile testing. The results show that the recrystallization fraction is very low (<15%) when the temperature is below 470 ℃ due to the pinning effect on grain boundaries of Al_3Zr dispersoids. When the forgings are treated at 510 ℃, the recrystallization fraction increases significantly to about 48%. The main phases in this alloy are Al_7Cu_2Fe and η phases. The second phases don't change obviously with increasing temperature and time because the η phase is dissolved almost completely after solution treatment at 470 ℃ for 60 min. The best solution treatment for 1933 alloy forgings is 470 ℃, 60 min, and the alloys under these conditions have the best tensile properties.

参考文献

[1] 蹇海根,姜锋,徐忠艳,官迪凯.航空用高强韧Al-Zn-Mg-Cu系铝合金的研究进展[J].热加工工艺,2006(12):61-66.
[2] 戴晓元,夏长清,刘昌斌,古一.固溶处理及时效对7xxx铝合金组织与性能的影响[J].材料热处理学报,2007(04):59-63.
[3] 张新明,黄振宝,刘胜胆,刘文辉,张翀,杜予晅.双级固溶处理对7A55铝合金组织与力学性能的影响[J].中国有色金属学报,2006(09):1527-1533.
[4] Kanghua Chen;Hongwei Liu;Zhuo Zhang .The improvement of constituent dissolution and mechanical properties of 7055 aluminum alloy by stepped heat treatments[J].Journal of Materials Processing Technology,2003(1):190-196.
[5] Z. Cvijovic;M. Rakin;M. Vratnica .Microstructural dependence of fracture toughness in high-strength 7000 forging alloys[J].Engineering Fracture Mechanics,2008(8):2115-2129.
[6] 宁爱林,刘志义,郑青春,曾苏民.分级固溶对7A04铝合金组织与性能的影响[J].中国有色金属学报,2004(07):1211-1216.
[7] K.H. Chen;H.C. Fang;Z. Zhang;X. Chen;G. Liu .Effect of of Yb, Cr and Zr additions on recrystallization and corrosion resistance of Al–Zn–Mg–Cu alloys[J].Materials Science and Engineering. A, Structural Materials: Properties, Microstructure and Processing,2008(1/2):426-431.
[8] FJELDLY A;ANDERS S;ROVEN H J .Strain localisation in solution heat treated Al-Zn-Mg alloys[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2001,300(1/2):165-170.
[9] TKACHENKO E A;VALKOV V I;BARATOV V J;FRIDLYANDER J N .The properties and structure of high-strength aluminum 1933 alloy forging[J].Materials Science Forum,1996,217/222:1819-1822.
[10] FRIDLYANDER I N;TKACHENKO E A;BERSTENEV V V .Effect of microstructure on the cracking resistance characteristics of Al-Zn-Mg-Cu-Zr (1933) wrought high-strength alloy[J].Materials Science Forum,2002,396:1347-1352.
[11] 陈石卿.俄罗斯的航空用铝合金的发展及其历史经验(一)[J].航空工程与维修,2001(3):17-18.
[12] 戴晓元,夏长清,孙振起,华熳煜,Long Chunguang.强化固溶对Al-7.6Zn-2.1Mg-1.30Cu-0.15Zr-0.30Sc合金组织与性能的影响[J].稀有金属材料与工程,2007(z3):195-198.
[13] ROBSON J D;PRANGNELL P B .Predicting the recrystallized volume fraction in 7050 hot rolled plate[J].Materials Science and Technology,2002,18(06):607-618.
[14] J. D. ROBSON;P. B. PRANGNELL .DISPERSOID PRECIPITATION AND PROCESS MODELLING IN ZIRCONIUM CONTAINING COMMERCIAL ALUMINIUM ALLOYS[J].Acta materialia,2001(4):599-613.
[15] ZHANG Zhuo,CHEN Kang-hua,FANG Hua-chan,QI Xiong-wei,LIU Gang.Effect of Yb addition on strength and fracture toughness of Al-Zn-Mg-Cu-Zr aluminum alloy[J].中国有色金属学会会刊(英文版),2008(05):1037-1042.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%