金属学报, 1997, 33(10): 1015-1020.
[12]铝单晶体的疲劳损伤与裂纹萌生
王明章 , 林实 , 李金许 {"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"本文阐述了基于原子力显微镜(AFM)的弯曲测试测量纳米梁厚度的理论和方法,并界定了基于AFM的厚度测量方法的适用条件,对基于AFM的厚度测量的两个典型应用进行了介绍.对硅纳米梁进行了厚度测量,并进行了重复性实验,梁的平均测量度为160.36nm.","authors":[{"authorName":"栗大超","id":"ccd062d9-a772-43df-80da-353d51045d51","originalAuthorName":"栗大超"},{"authorName":"徐临燕","id":"ff3b65e4-7199-41ef-ace2-0f0b5ba7e7b9","originalAuthorName":"徐临燕"},{"authorName":"傅星","id":"234fcde3-8d0f-419e-b715-60df11438f4c","originalAuthorName":"傅星"},{"authorName":"胡小唐","id":"afaa1a91-442b-47cf-99d1-3ca251e9b6d2","originalAuthorName":"胡小唐"}],"doi":"10.3969/j.issn.1007-4252.2008.02.036","fpage":"444","id":"f5198690-dcf4-426e-ad45-55dc33c9ee11","issue":"2","journal":{"abbrevTitle":"GNCLYQJXB","coverImgSrc":"journal/img/cover/GNCLYQJXB.jpg","id":"34","issnPpub":"1007-4252","publisherId":"GNCLYQJXB","title":"功能材料与器件学报 "},"keywords":[{"id":"528aef62-ffa7-4964-9fc9-6ff43d80b86f","keyword":"纳机电系统","originalKeyword":"纳机电系统"},{"id":"6dd77552-0a6d-4d54-ba8e-fd7047d0fea4","keyword":"纳米梁","originalKeyword":"纳米梁"},{"id":"b784fa7d-001c-4e30-b841-434452a6dc4d","keyword":"厚度测量","originalKeyword":"厚度测量"},{"id":"6757ffc1-f11d-4962-a09b-ad1566209978","keyword":"AFM","originalKeyword":"AFM"},{"id":"82fbbba9-30d3-440e-9449-aaea5c3d45ae","keyword":"弯曲测试","originalKeyword":"弯曲测试"}],"language":"zh","publisherId":"gnclyqjxb200802036","title":"基于AFM力曲线的纳米梁厚度的非破坏测量方法","volume":"14","year":"2008"},{"abstractinfo":"常规的通过干法刻蚀制作纳米梁的方法会不可避免地在梁上引入晶格损伤层.本文提出一种制造无晶格损伤层纳米梁的新工艺方法.在常规光刻后,辅助利用FIB(聚焦离子束)刻蚀修改硅梁中部上方的SiO2掩模.根据单晶硅的材料和工艺特点,通过KOH各向异性腐蚀,硅梁两侧壁与硅片表面垂直,并自停止为(111)面.自停止面自校正地沿<112>晶向自硅梁中部向两端扩展,直至硅梁成型.经过冷冻干燥,最终在(110)SOI硅片上制得了宽度为112nm的单晶硅纳米梁.自校正的腐蚀方式提升了工艺稳定性,并且由于结合利用了湿法腐蚀和FIB技术,此工艺方法具有无晶格损伤层、工艺重复性好、加工精度高等优点.","authors":[{"authorName":"成海涛","id":"38a7092d-fb94-436a-9344-ad10f96a20dc","originalAuthorName":"成海涛"},{"authorName":"杨恒","id":"a8f23e32-600f-4407-b4f0-b0e1e450b22b","originalAuthorName":"杨恒"},{"authorName":"王跃林","id":"04676a49-ad8e-460d-9394-8f93c2c03a41","originalAuthorName":"王跃林"}],"doi":"10.3969/j.issn.1007-4252.2010.02.014","fpage":"163","id":"dcf10094-5f85-49c0-82dd-8f83caea1390","issue":"2","journal":{"abbrevTitle":"GNCLYQJXB","coverImgSrc":"journal/img/cover/GNCLYQJXB.jpg","id":"34","issnPpub":"1007-4252","publisherId":"GNCLYQJXB","title":"功能材料与器件学报 "},"keywords":[{"id":"0ba69bc0-4277-47db-940e-1a605d9ae117","keyword":"纳米梁","originalKeyword":"纳米梁"},{"id":"5f267675-5cea-4935-a5c7-9e5303d7b808","keyword":"各向异性腐蚀","originalKeyword":"各向异性腐蚀"},{"id":"b3554104-1a2f-4ae3-807c-ca63cb953d0b","keyword":"FIB","originalKeyword":"FIB"}],"language":"zh","publisherId":"gnclyqjxb201002014","title":"一种FIB刻蚀结合KOH腐蚀的制造纳米梁的新方法","volume":"16","year":"2010"},{"abstractinfo":"对在纳米压入仪上进行悬臂梁法测量弹性模量的主要影响因素进行了综合分析,主要包括加载系统悬置弹簧刚度、压头压入、梁沿截面宽度方向挠曲、梁支座附加挠曲等影响.在考虑这些因素的基础上,得到了悬臂梁的有效挠度,利用有效挠度与载荷之间的关系,评价悬臂梁材料的弹性模量.对单晶硅(100)悬臂梁试样进行了实验,得到其弹性模量为155 GPa±9.5%GPa,与参考文献值符合较好.表明在纳米压入仪上进行悬臂梁法测量,只有综合这些影响因素后,才能获得有效、准确的弹性模量测量结果.","authors":[{"authorName":"朱强","id":"b6ece239-5687-4e38-95bd-4f4c1ed008a8","originalAuthorName":"朱强"},{"authorName":"蒋庄德","id":"723468d2-f17b-4e9c-b371-dcc19c6ffbd2","originalAuthorName":"蒋庄德"},{"authorName":"赵则祥","id":"bcbc034d-6bd2-4799-98cd-fae58d970bfc","originalAuthorName":"赵则祥"},{"authorName":"王海容","id":"a6aedef5-8693-4da0-8469-38503df030e8","originalAuthorName":"王海容"},{"authorName":"杨树明","id":"5e276330-36c9-453b-bde5-c407235fa501","originalAuthorName":"杨树明"}],"doi":"","fpage":"1842","id":"6e4eb720-3734-477a-be1e-465bddc3562b","issue":"11","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"42046b4e-8216-4f18-ae88-8a1753e3041a","keyword":"悬臂梁法","originalKeyword":"悬臂梁法"},{"id":"a841ad2d-ab60-4f8e-92ae-210729b0c1d9","keyword":"微构件","originalKeyword":"微构件"},{"id":"c371767a-7870-402b-b735-2518cc749fd1","keyword":"弹性模量","originalKeyword":"弹性模量"},{"id":"414a5ef3-8df4-46b2-921c-16a6e5e71939","keyword":"MEMS","originalKeyword":"MEMS"},{"id":"a199ea50-08e7-475f-ac8a-d24c8b3b43ca","keyword":"纳米压入仪","originalKeyword":"纳米压入仪"}],"language":"zh","publisherId":"xyjsclygc200511040","title":"在纳米压入仪上进行悬臂梁法测量弹性模量的影响因素分析","volume":"34","year":"2005"},{"abstractinfo":"原子力显微镜微悬臂梁是微纳米领域重要的微力传感器,而微悬臂梁的杨氏模量又是决定其力学性能的重要参数.由于微悬臂梁的尺寸处于微米级,有些特征尺寸甚至达到纳米级,常规的测试结构材料特性的检测方法已经难以满足需求,急需研究新的测试方法和装置对微悬臂梁的机械特性进行研究和分析.本文提出了一种基于微悬臂梁振动固有频率测试的杨氏模量测试方法.使用本方法时,首先建立待测微悬臂梁在空气中的振动模型,并使用数值仿真的方法计算结构尺寸相同但杨氏模量不同的各种微悬臂梁在空气中的振动固有频率,然后实际测量微悬臂梁的振动固有频率,和实验结果最接近的仿真结果所对应的杨氏模量参数就是待测微悬臂梁的杨氏模量.本文最后对Mikromaseh公司生产的NSC型探针的杨氏模量进行了测试,实验结果证实了本文提出的方法的正确性.","authors":[{"authorName":"王飞","id":"aa021c24-11c8-4c84-8c9b-0f61b2ff17dd","originalAuthorName":"王飞"},{"authorName":"赵学增","id":"be6f4cf1-f371-4e13-b67c-1d1573b0afd2","originalAuthorName":"赵学增"}],"doi":"10.3969/j.issn.1007-4252.2008.02.014","fpage":"345","id":"e1e2d33a-d8c9-4160-b857-1f62493c468f","issue":"2","journal":{"abbrevTitle":"GNCLYQJXB","coverImgSrc":"journal/img/cover/GNCLYQJXB.jpg","id":"34","issnPpub":"1007-4252","publisherId":"GNCLYQJXB","title":"功能材料与器件学报 "},"keywords":[{"id":"37105af1-bca0-4fa2-8588-92d79f2df699","keyword":"原子力显微镜","originalKeyword":"原子力显微镜"},{"id":"7d349fc4-f8d1-4eeb-979e-920ad901bdfa","keyword":"微悬臂梁","originalKeyword":"微悬臂梁"},{"id":"8efe6bf2-60c4-4f1f-870b-2702a470c089","keyword":"杨氏模量","originalKeyword":"杨氏模量"},{"id":"7d076908-f6c9-471e-8442-4c3b2f160876","keyword":"频率测量","originalKeyword":"频率测量"}],"language":"zh","publisherId":"gnclyqjxb200802014","title":"原子力显微镜微悬臂梁杨氏模量动态测试方法","volume":"14","year":"2008"},{"abstractinfo":"本文介绍了φ1200RPM管梁弯曲试验以及针对RPM管在工程应用中如何控制其梁弯曲变形进行了探讨.","authors":[{"authorName":"周仕刚","id":"ef0e0af5-3608-4e35-94e9-56ada439fd3f","originalAuthorName":"周仕刚"},{"authorName":"沈星万","id":"af4a4eef-138a-4d9e-a4e2-a899e3ef53d7","originalAuthorName":"沈星万"},{"authorName":"高永飞","id":"d95025bf-0ccd-4558-86a1-ddd5081ca799","originalAuthorName":"高永飞"},{"authorName":"薛元德","id":"5d1b5804-c116-401a-949d-d8090dd1667b","originalAuthorName":"薛元德"},{"authorName":"沈碧霞","id":"dbfd76bf-ad83-4894-8440-bb1cd3073b6b","originalAuthorName":"沈碧霞"}],"doi":"10.3969/j.issn.1003-0999.2001.04.002","fpage":"6","id":"8aa9a3bf-8770-44f6-9fa0-0da468f3f16c","issue":"4","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"361621c7-8baf-40d0-a2aa-b7e89d23a500","keyword":"RPM管梁弯曲应变控制","originalKeyword":"RPM管梁弯曲应变控制"}],"language":"zh","publisherId":"blgfhcl200104002","title":"RPM管梁弯曲试验及其梁弯曲应变的工程控制","volume":"","year":"2001"},{"abstractinfo":"考虑内部热传导,研究了格栅夹层梁一侧受热后的弯曲变形.认为变形后夹层结构中间腹板无弯曲.利用格栅夹层梁结构上的周期性,通过胞元结构的内力平衡方程和变形协调关系,得到了胞元两端内力和位移的关系.引入传递矩阵,建立了夹层梁内力和变形随温度变化的表达式.应用所建立的模型计算了悬臂格栅夹层梁在其上表面受热后的变形.在格栅夹层梁包含的胞元数量较多、腹板高度较小且厚度与表板厚度相近的情况下,由本文模型计算得到的挠度结果与有限元结果吻合较好.","authors":[{"authorName":"张锐","id":"c6c3af1d-19b4-4729-942f-34c30bb9e75c","originalAuthorName":"张锐"},{"authorName":"尚新春","id":"69755ca9-4b6b-4100-a234-744bfc229840","originalAuthorName":"尚新春"}],"doi":"","fpage":"1558","id":"86e647d2-0f7e-4323-95e0-0fa2e791822a","issue":"6","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"a72b255f-f9e8-4f4d-a7b4-f5524735c6a1","keyword":"格栅夹层结构","originalKeyword":"格栅夹层结构"},{"id":"7e7cd176-601e-43e8-ac15-eb4aa10f83df","keyword":"热弯曲","originalKeyword":"热弯曲"},{"id":"e90c6179-a561-4b15-843b-e5468d92a3c2","keyword":"变形","originalKeyword":"变形"},{"id":"fc685ed2-aecd-46ba-991e-b227b546ec7d","keyword":"胞元结构分析","originalKeyword":"胞元结构分析"},{"id":"a50b9198-c7f6-4bc3-9dbd-d1472a0e4905","keyword":"传递矩阵","originalKeyword":"传递矩阵"}],"language":"zh","publisherId":"fhclxb201406024","title":"格栅夹层梁的热弯曲变形","volume":"31","year":"2014"},{"abstractinfo":"提出一种基于Layerwise层合理论的复合阻尼结构梁单元用于计算嵌入多阻尼层的复合阻尼结构梁.通过与NASTRAN软件的计算结果进行对比,证明该梁单元满足层间位移、应力连续条件并避免了剪切自锁,并且具有单元数量和节点数量少、计算精度高的优点.","authors":[{"authorName":"张醒","id":"ff0c1c77-1f73-430f-80c9-7ac548963af2","originalAuthorName":"张醒"},{"authorName":"徐超","id":"9f3a9025-a671-4ef8-947a-785c9cf15615","originalAuthorName":"徐超"},{"authorName":"李莉","id":"892ad297-23ff-445b-9a38-6dec3ad8295d","originalAuthorName":"李莉"},{"authorName":"游少雄","id":"c77c795d-009f-4463-bb96-c3c060a436d4","originalAuthorName":"游少雄"}],"doi":"10.3969/j.issn.1007-2330.2007.06.004","fpage":"11","id":"664c6174-9e05-43e3-8f6a-f6c84c0aa95b","issue":"6","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"a5779117-e732-4c40-bb8c-e607ebce7bba","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"830a5808-ca57-4344-a395-516126b10ce6","keyword":"有限元","originalKeyword":"有限元"},{"id":"f38e2ee2-5889-4df6-b7be-a335aa0452e1","keyword":"层合理论","originalKeyword":"层合理论"}],"language":"zh","publisherId":"yhclgy200706004","title":"复合阻尼结构梁动力特性分析","volume":"37","year":"2007"},{"abstractinfo":"用金相、扫描电镜等分析方法,对开裂的客车纵梁进行了分析.结果表明,纵梁钢材冶金质量差,钢中存在较多的非金属夹杂物,降低了钢的力学性能;纵梁钢板外侧表面遭受外来敲击造成的条状凹陷伤痕,钢板热轧工艺不当,表层存在大块氧化夹杂物及微裂纹等热轧工艺缺陷,是导致其发生纵向开裂的主要原因.","authors":[{"authorName":"陈康敏","id":"315cd936-0248-4241-8af6-eaa160b1490d","originalAuthorName":"陈康敏"},{"authorName":"曹芬","id":"44330ccf-5d59-45e5-b0bf-f47675b016f4","originalAuthorName":"曹芬"},{"authorName":"潘励","id":"ebf9d54e-7ead-4be7-861c-0cb720b469af","originalAuthorName":"潘励"}],"doi":"10.3969/j.issn.1000-3738.2003.07.017","fpage":"52","id":"c265e335-73f2-4544-a7ae-510b445b7be8","issue":"7","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"00cf1b2a-d853-4e0f-af81-b45c7b7e32b2","keyword":"纵梁","originalKeyword":"纵梁"},{"id":"03365412-efd5-4ccd-9259-278c0956b3b0","keyword":"非金属夹杂物","originalKeyword":"非金属夹杂物"},{"id":"da656628-b850-451c-9be8-c85b782bbe89","keyword":"裂纹","originalKeyword":"裂纹"},{"id":"a03fca37-e6f9-462c-96be-7191a2ce5199","keyword":"失效分析","originalKeyword":"失效分析"}],"language":"zh","publisherId":"jxgccl200307017","title":"客车纵梁开裂原因分析","volume":"27","year":"2003"},{"abstractinfo":"由于层压板梁的各向异性,载荷下结构响应和刚度特性难以确定.为了解决有限元方法在进行复合层压板梁的结构分析时参数确定的难题,提出了一种层压板工字梁的应力分析方法,并在MATLAB上编程实现,通过与理论计算值和有限元软件ANSYS分析结果进行对比,证明该方法可行,且适合于进行参数化研究设计.","authors":[{"authorName":"王亚妮","id":"54d20ff8-3fb1-4f46-85ed-050a7d42e448","originalAuthorName":"王亚妮"},{"authorName":"袁昌盛","id":"2e8553d2-8d08-4a02-8768-54c3afb6ed12","originalAuthorName":"袁昌盛"},{"authorName":"孔德拴","id":"50f94a8b-eba3-44a8-80fc-381107b50526","originalAuthorName":"孔德拴"}],"doi":"10.3969/j.issn.1004-244X.2012.04.024","fpage":"79","id":"ece10a64-3962-486a-beac-81faa094a594","issue":"4","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"bf7af5b5-52a3-4a6a-bd86-75be8c815d35","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"469d7da3-c661-4366-a1ea-4b0e133e72ac","keyword":"工字梁","originalKeyword":"工字梁"},{"id":"d46fd672-c2b4-4d37-9b07-e208050f2c1d","keyword":"截面特性","originalKeyword":"截面特性"},{"id":"b98fc1bc-fbf5-4c05-8163-80bc9d8606d4","keyword":"结构分析","originalKeyword":"结构分析"}],"language":"zh","publisherId":"bqclkxygc201204024","title":"复合材料工字梁结构分析","volume":"35","year":"2012"},{"abstractinfo":"某公司生产的货车在运行过程中发现枕梁下盖板开裂.对其进行化学成分分析、力学性能和金相检验以及对断口形貌扫描电镜进行观察.结果表明,枕梁下盖板的化学成分和力学性能符合要求,基体金相组织为铁素体+珠光体,枕梁下盖板受较大交变应力的作用,裂纹沿枕梁下盖板材料的轧制方向开裂,为疲劳断裂.","authors":[{"authorName":"王立辉","id":"ed7f253d-6646-4820-9380-d06f9986a483","originalAuthorName":"王立辉"},{"authorName":"但启安","id":"494c5d13-3093-4545-9b0a-0d8cf55926fd","originalAuthorName":"但启安"},{"authorName":"徐巍","id":"823cc435-dce4-4283-b7f1-5381534c7dc7","originalAuthorName":"徐巍"},{"authorName":"李庆晓","id":"17f6d0ff-f3c4-4625-b99b-65cac42da6e2","originalAuthorName":"李庆晓"}],"doi":"10.13228/j.boyuan.issn1001-0777.20160094","fpage":"49","id":"67abf39a-da87-411c-9a60-c06db4f7d714","issue":"3","journal":{"abbrevTitle":"WLCS","coverImgSrc":"journal/img/cover/WLCS.jpg","id":"64","issnPpub":"1001-0777","publisherId":"WLCS","title":"物理测试"},"keywords":[{"id":"360ac94b-6f78-460b-9ef0-129e906888e6","keyword":"盖板","originalKeyword":"盖板"},{"id":"3966765b-4012-45ae-a43c-aded0788bbd8","keyword":"裂纹","originalKeyword":"裂纹"},{"id":"12a659d8-de1b-484c-9beb-5504a9dc3661","keyword":"疲劳","originalKeyword":"疲劳"}],"language":"zh","publisherId":"wlcs201703011","title":"货车枕梁下盖板开裂分析","volume":"35","year":"2017"}],"totalpage":2432,"totalrecord":24313}