欢迎登录材料期刊网

材料期刊网

高级检索

介绍了近年来分子模拟方法在环氧树脂的固化、玻璃化转变、湿热老化以及复合材料的界面等方面的应用,体现了分子模拟方法在分子水平上研究关联材料的微观结构与宏观性能的优越性,分子模拟方法是未来材料设计与开发的重要手段之一。

The application of molecular simulation method in studying the curing, glass transition tempera-ture, hygrothermal ageing, and interface of epoxy resin and its composites were introduced. The molecu-lar simulation method shows superiority in relating the microstructure and macro-properties of materials at molecular level, and it is one of the important methods to design and develop materials in the future.

参考文献

[1] Yang Q;Yang X P;Li X D et al.The Curing and Ther-mal Transition Behavior of Epoxy Resin:A Molecular Simu-lation and Experimental Study[J].RSC Advances,2013,3(20):7452-7459.
[2] Varshney V;Patnaik SS;Roy AK;Farmer BL .A molecular dynamics study of epoxy-based networks: Cross-linking procedure and prediction of molecular and material properties[J].Macromolecules,2008(18):6837-6842.
[3] Chaofu Wu;Weijian Xu .Atomistic molecular simulations of structure and dynamics of crosslinked epoxy resin[J].Polymer: The International Journal for the Science and Technology of Polymers,2007(19):5802-5812.
[4] Li, C.;Strachan, A. .Molecular simulations of crosslinking process of thermosetting polymers[J].Polymer: The International Journal for the Science and Technology of Polymers,2010(25):6058-6070.
[5] Komarov PV;Chiu YT;Chen SM;Khalatur PG;Reineker P .Highly cross-linked epoxy resins: an atomistic molecular dynamics simulation combined with a mapping/reverse mapping procedure[J].Macromolecules,2007(22):8104-8113.
[6] Lin, P.-H.;Khare, R. .Local Chain dynamics and dynamic heterogeneity in cross-linked epoxy in the vicinity of glass transition[J].Macromolecules,2010(15):6505-6510.
[7] Yang, Q.;Li, X.;Shi, L.;Yang, X.;Sui, G. .The thermal characteristics of epoxy resin: Design and predict by using molecular simulation method[J].Polymer: The International Journal for the Science and Technology of Polymers,2013(23):6447-6454.
[8] Fan HB;Yuen MMF .Material properties of the cross-linked epoxy resin compound predicted by molecular dynamics simulation[J].Polymer: The International Journal for the Science and Technology of Polymers,2007(7):2174-2178.
[9] Choi, J.;Yu, S.;Yang, S.;Cho, M. .The glass transition and thermoelastic behavior of epoxy-based nanocomposites: A molecular dynamics study[J].Polymer: The International Journal for the Science and Technology of Polymers,2011(22):5197-5203.
[10] Tsige M.;Taylor PL. .Simulation study of the glass transition temperature in poly(methyl methacrylate) - art. no. 021805[J].Physical review.E.Statistical physics, plasmas, fluids, and related interdisciplinary topics,2002(2 Pt.1):1805-0.
[11] Bandyopadhyay, A.;Valavala, P.K.;Clancy, T.C.;Wise, K.E.;Odegard, G.M. .Molecular modeling of crosslinked epoxy polymers: The effect of crosslink density on thermomechanical properties[J].Polymer: The International Journal for the Science and Technology of Polymers,2011(11):2445-2452.
[12] Li, C.;Strachan, A. .Molecular dynamics predictions of thermal and mechanical properties of thermoset polymer EPON862/DETDA[J].Polymer: The International Journal for the Science and Technology of Polymers,2011(13):2920-2928.
[13] Nouri, N.;Ziaei-Rad, S. .A molecular dynamics investigation on mechanical properties of cross-linked polymer networks[J].Macromolecules,2011(13):5481-5489.
[14] Chaofu Wu;Weijian Xu .Atomistic simulation study of absorbed water influence on structure and properties of crosslinked epoxy resin[J].Polymer: The International Journal for the Science and Technology of Polymers,2007(18):5440-5448.
[15] Hofmann D.;Ulbrich J.;Schepers C.;Bohning M.;Fritz L. .Detailed-atomistic molecular modeling of small molecule diffusion and solution processes in polymeric membrane materials [Review][J].Macromolecular theory and simulations,2000(6):293-327.
[16] Chang, S.-H.;Kim, H.-S. .Investigation of hygroscopic properties in electronic packages using molecular dynamics simulation[J].Polymer: The International Journal for the Science and Technology of Polymers,2011(15):3437-3442.
[17] Ketan S. Khare;Rajesh Khare .Effect of Carbon Nanotube Dispersion on Glass Transition in Cross-Linked Epoxy-Carbon Nanotube Nanocomposites: Role of Interfacial Interactions[J].The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical,2013(24):7444-7454.
[18] Shiu S C;Tsai J L .Characterizing Thermal and Mechani-cal Properties of Graphene/Epoxy Nanocomposites[J].Com-posites B,2014,56:691-697.
[19] R. Zhu;E. Pan;A.K. Roy .Molecular dynamics study of the stress-strain behavior of carbon-nanotube reinforced Epon 862 composites[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2007(1/2):51-57.
[20] Qiu, JJ;Zhang, C;Wang, B;Liang, R .Investigation of the flow behaviors of carbon nanotubes dispersed epoxy resin with modified bi-mode FENE dumbbell simulation[J].Computational Materials Science,2009(4):1379-1385.
[21] Yu, S;Yang, S;Cho, M .Multi-scale modeling of cross-linked epoxy nanocomposites[J].Polymer,2009(3):945-952.
[22] P.K. Valavala;T.C. Clancy;G.M. Odegard .Multiscale modeling of polymer materials using a statistics-based micromechanics approach[J].Acta materialia,2009(2):525-532.
[23] Po-Han Lin;Rajesh Khare .Molecular Simulation of Cross-Linked Epoxy and Epoxy—POSS Nanocomposite[J].Macromolecules,2009(12):4319-4327.
[24] C.M. Hadden;B.D.Jensen;A. Bandyopadhyay;G.M. Odegard;A. Koo;R. Liang .Molecular modeling of EPON-862/graphite composites: Interfacial characteristics for multiple crosslink densities[J].Composites science and technology,2013(Mar.):92-99.
[25] Gou JH;Minaie B;Wang B;Liang ZY;Zhang C .Computational and experimental study of interfacial bonding of single-walled nanotube reinforced composites[J].Computational Materials Science,2004(3/4):225-236.
[26] Liu, H.;Li, M.;Lu, Z.-Y.;Zhang, Z.-G.;Sun, C.-C.;Cui, T. .Multiscale simulation study on the curing reaction and the network structure in a typical epoxy system[J].Macromolecules,2011(21):8650-8660.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%