半导体热电材料的热电效应有着巨大的应用潜力,但如何提高材料的热电转化效率是目前研究者们探讨的热点问题.介绍了一些有潜力的新型热电材料诸如Skutterudites、Clathrates、Half-Heusler、准晶体等体系的研究概况,重点介绍了功能梯度热电材料和低维热电材料的研究动态.
参考文献
[1] | Ding Z F .A new solution chemical method to make low dimensional thermoelectric materials[J].Journal of Alloys and Compounds,2003,350(02):313. |
[2] | Slack G A.New materials and performance limits for thermoelectric cooling[A].Boca Raton:CRC Hress,1994:407. |
[3] | Shi X;Zhang W;Chen LD;Yang J .Filling fraction limit for intrinsic voids in crystals: Doping in skutterudites[J].Physical review letters,2005(18):5503-1-5503-4-0. |
[4] | Berardan D;Codart C .Chemical properties and thermopower of the new series of Skutterudite Ce1-pUbpFe4Sb12[J].Journal of Alloys and Compounds,2003,351:18. |
[5] | Williams R K .Filled skutterudites:a new class of thermoelectric materials[J].Science,2004,272:1325. |
[6] | Singh David J;Feldman J L.First principles studies of novel thermoelectric materials[A].Boston VSA:IEEE Inc,1999:447. |
[7] | Mi J L;Zhao X B .Solvothermal synthesis of nanostructured ternary Skutterudite Fe0.5 Ni0.5 Sb3[J].Journal of Alloys and Compounds,2005,399:260. |
[8] | Goldsid H J;Nolas G S.A review of the new thermoelectric materials[A].Beijing China:IEEE Inc,2002 |
[9] | Nolas G S.Transport properties of tin clathrates[A].Boston USA:IEEE Inc,1999:494. |
[10] | Nolas GS.;Yang J.;Ertenberg RW. .Transport properties of CoGe1.5Se1.5 - art. no. 193206[J].Physical review, B. Condensed matter and materials physics,2003(19):3206-0. |
[11] | Yoshiyuki Kawaharada;Ken Kurosnki .High temperature thermoelectric properties of CoTiSb half-heusler compounds[J].Journal of Alloys and Compounds,2004,384:308. |
[12] | Yoshiyuki Kawaharada;Ken Kurosnki .High temperature thermoelectric properties of CoNb1-xHfxSn1-ySby half-heusler compouds[J].Journal of Alloys and Compounds,2004,377:312. |
[13] | Xia Y;Bhatacharya S .The transport properties of ZrNiSn[J].Journal of Applied Physics,2003,88(04):1997. |
[14] | 新野正立.机械合金化-脉冲通电制备梯度Mg2Si-FeSi2热电材料[J].倾斜机能材料研究会会报,2004(09):11. |
[15] | Caillat T;Fleurial J P.Development of high efficiency egmented thermoelectric unicoples[A].,2003:282. |
[16] | Dresselhaus M S;Koga T.Low dimensional thermoelectrics[A].USA,IEEE,1997:12. |
[17] | Hicks L D;Dresselhaus M S .Use of quantum-well superlattices to obtain a high figure of merit from nonconventional thermoelectric materials[J].Applied Physics A:Materials Science and Processing,2003,63(23):3230. |
[18] | Hicks L D;Dresselhaus M S .Effect of quantum-well strutures on the structur on the thermoelectric figure of merit[J].Physical Review B,2003,47(19):12727. |
[19] | 夏建白;朱邦芬;黄昆.半导体超晶格物理[M].上海:上海科学技术出版社,1995 |
[20] | Broido D A;Reinecke .Use of quantum-well superlattices to obtain high figure of merit from nonconventional thermoelectric materials[J].Comment Appl Phys Lett,2004,67(08):1170. |
[21] | Balandin A.;Wang KL. .Effect of phonon confinement on the thermoelectric figure of merit of quantum wells[J].Journal of Applied Physics,1998(11):6149-6153. |
[22] | Koga T.;Cronin SB.;Dresselhaus MS.;Sun X. .Carrier pocket engineering to design superior thermoelectric materials using GaAs/AlAs superlattices[J].Applied physics letters,1998(20):2950-2952. |
[23] | Ji X H;Zhao X B.Thermoelectric Bi2Te3 nanotubes and nanocapsules prepared by hydrothermal synthesis[A].Adelaide:Austria IEEE Inc,2004:494. |
[24] | Tritt T M .Strategies for the investigation of new bulk materials for thermoelectric applications[J].Science,1999,283:804. |
[25] | Vining C B .A model for the high-temperature transport properties of heavily doped n-type silicon-germanuium alloys[J].Physical Review,1996,147:636. |
[26] | Slack G A;Hussain M A .The next generation of thermoelectric materials[J].Journal of Applied Physics,1991,70:2694. |
[27] | Vining C B .Vibration properties of tin clathrate materials[J].Materials Research Society Symposium Proceedings,1991,234:95. |
[28] | Klemens P G .Grystals structure of hafnium pentatelluride[J].Acta Chemica Scandinavica,1973,27(07):2367. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%