{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"提供了一种用于滑石粉中石棉检测和确证分析的振筛富集样品预处理方法.对经X射线衍射法检测含有疑似石棉的滑石粉样品,比较了325目和400目标准筛的振筛法富集倍数;通过电子显微镜法和偏光显微镜法比较了富集前后石棉纤维的定性观察结果.结果表明,在低放大倍数下(30~200倍)直接观察滑石粉原样,很难在视野范围内找到纤维状物质,而400目振筛上残留物中的石棉纤维在最低的放大倍数30倍时即清晰可辨;在放大倍数400倍以上,滑石粉原样通过调节观察位置在视野范围内能搜寻到几个纤维状石棉物质,而同放大倍数的400目振筛上残留物中的石棉纤维满视野,因此振筛富集技术可以显著提高滑石粉中石棉显微镜观察的准确性和可靠性.比较了未经研磨和研磨后富集前后样品(原样、筛上及筛下样品)中石棉类矿物的X射线衍射谱图,结果表明,富集前后样品中石棉类矿物的相对衍射强度即石棉类矿物的含量无明显变化.因此,振筛富集法仅可用于滑石粉中石棉的定性确证分析,不能用于定量或半定量分析.","authors":[{"authorName":"赵景红","id":"fce3b6bc-f45e-4344-8d3d-e527c16ce180","originalAuthorName":"赵景红"},{"authorName":"陈新","id":"d035189c-128e-4f46-9a28-02ef58c607d4","originalAuthorName":"陈新"},{"authorName":"任玉伟","id":"a76fd205-a9ce-4b9c-8fee-1a9efbfc6060","originalAuthorName":"任玉伟"},{"authorName":"张建华","id":"6ccc8cff-5d50-49fc-bf58-e6a44d7a7cae","originalAuthorName":"张建华"},{"authorName":"宋承钢","id":"24493fac-836d-425d-9b17-f220fc4fc71d","originalAuthorName":"宋承钢"}],"doi":"","fpage":"12","id":"06f5c19d-2abf-4aab-b67a-91fe5f1f4ea1","issue":"10","journal":{"abbrevTitle":"YJFX","coverImgSrc":"journal/img/cover/YJFX.jpg","id":"71","issnPpub":"1000-7571","publisherId":"YJFX","title":"冶金分析 "},"keywords":[{"id":"903dd650-c31b-4b72-9a87-01c921de020c","keyword":"振筛富集法","originalKeyword":"振筛富集法"},{"id":"d123b9d6-ad25-4e9d-a28f-e84f42aaabcc","keyword":"滑石粉","originalKeyword":"滑石粉"},{"id":"d07a814c-4452-41e9-982d-3672bef46828","keyword":"石棉","originalKeyword":"石棉"}],"language":"zh","publisherId":"yjfx201310003","title":"振筛富集法在滑石粉中石棉检测确证分析中的应用","volume":"33","year":"2013"},{"abstractinfo":"近日,承钢成功轧制规格为25mm的HRB600高强抗震钢筋300t,各项指标满足设计要求,填补了中国600MPa级别高强钢筋生产的空白。承钢从2011年年初开始就提出了按照国家标准成分范围研制和开发600MPa级高强钢筋的科研攻关课题,","authors":[],"doi":"","fpage":"33","id":"f4aaa218-b225-4c37-ba6e-29374c2aacfc","issue":"2","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"6b5f99c3-947d-4158-979e-6a02eeb9d06f","keyword":"抗震钢筋","originalKeyword":"抗震钢筋"},{"id":"4e9421bf-18ba-4217-86f2-fd95825793dc","keyword":"轧制","originalKeyword":"轧制"},{"id":"2665f6bc-8022-480c-8aab-1b24cc0e2c50","keyword":"钢筋生产","originalKeyword":"钢筋生产"},{"id":"0288598e-7a3c-4298-a3c5-f5c2bfb1b707","keyword":"高强钢筋","originalKeyword":"高强钢筋"},{"id":"0a94df66-86c9-4f4f-b59d-7f27bfdafa09","keyword":"国家标准","originalKeyword":"国家标准"}],"language":"zh","publisherId":"gt201202008","title":"承钢成功轧制HRB600高强抗震钢筋","volume":"47","year":"2012"},{"abstractinfo":"EPR CRDM承压壳体由Z6CNNb18-11奥氏体不锈钢与X3CrNiMo1 3-4马氏体不锈钢焊接构成,属于异种钢焊接.两者的化学成分和物理性能差异较大,焊接接头易出现裂纹缺陷.通过对两种钢的化学成分、物理性能以及形成的焊接接头可能出现的问题进行分析,认为合理选用焊接材料和焊接工艺,可以获得优质的焊接接头.","authors":[{"authorName":"张平","id":"51db95a8-8a5a-4ce8-928c-d6030db0c3a5","originalAuthorName":"张平"}],"doi":"","fpage":"331","id":"9a384325-7ecc-4abe-9eb0-3ba0a0e06206","issue":"z2","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"22623d0d-edae-481b-bc49-643c16ce76c3","keyword":"异种钢焊接","originalKeyword":"异种钢焊接"},{"id":"ddcca1d9-f67e-4ee1-aa5b-76c7f0b4d4bd","keyword":"奥氏体不锈钢","originalKeyword":"奥氏体不锈钢"},{"id":"3dbe86b6-6d61-4b31-a502-ee875e375a84","keyword":"马氏体不锈钢","originalKeyword":"马氏体不锈钢"}],"language":"zh","publisherId":"cldb2013z2090","title":"EPR CRDM承压壳异种钢焊接研究","volume":"27","year":"2013"},{"abstractinfo":"目前承钢烧结生产主要以钒钛磁铁精矿为含铁物料,但其成品烧结矿强度低、低温还原粉化严重.针对这一问题,研究了承钢烧结原料烧结性能、烧结过程、烧结矿性能,得出海砂配比为0,黑山钒粉配比为14 %,普通精粉配比为20 %,钢渣配比为1%时为最优配矿,为承钢提高烧结矿质量提供了理论依据.","authors":[{"authorName":"孙艳芹","id":"3bef957f-8988-4d4f-8a0f-b0fafd47fc0f","originalAuthorName":"孙艳芹"},{"authorName":"杨松陶","id":"c1662003-9ae6-4bfd-b6c1-d47769ad9439","originalAuthorName":"杨松陶"},{"authorName":"吕庆","id":"a6205898-211c-4133-a0ae-30328fd5abff","originalAuthorName":"吕庆"},{"authorName":"李福民","id":"9a41ba85-0bb8-4839-a322-6004458d1e08","originalAuthorName":"李福民"}],"doi":"","fpage":"9","id":"240f761d-605e-43ad-9158-1dff91fdfa0b","issue":"3","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"1ea2eb29-76c1-4c3e-a7f4-f081c1272c84","keyword":"配矿","originalKeyword":"配矿"},{"id":"fb7ffacf-b844-4864-96e8-1a353c4caaeb","keyword":"钒钛磁铁矿","originalKeyword":"钒钛磁铁矿"},{"id":"c41ae46f-5da6-4547-a305-2c948f2c0a44","keyword":"烧结矿强度","originalKeyword":"烧结矿强度"},{"id":"cd759c79-df98-49af-a1c5-d4fc2c27afc9","keyword":"烧结过程","originalKeyword":"烧结过程"}],"language":"zh","publisherId":"gt201103003","title":"承钢钒钛磁铁矿烧结配矿正交优化研究","volume":"46","year":"2011"},{"abstractinfo":"承钢烧结生产目前主要以钒钛磁铁精矿为含铁物料,但其成品烧结矿强度低、低温还原粉化严重。针对这一问题,本文研究了承钢烧结原料烧结性能、烧结过程、烧结矿性能的研究。得出海砂配比为0%,黑山钒粉配比为14%,普通精粉配比为20%,钢渣配比为1%时为最优配矿。为承钢提高烧结矿质量提供理论依据。","authors":[{"authorName":"孙艳芹","id":"3ddcce50-af43-431c-98fe-10c14bd69048","originalAuthorName":"孙艳芹"}],"categoryName":"|","doi":"","fpage":"9","id":"6e79cb44-efd8-43a2-bd64-3e115f905aa8","issue":"3","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[],"language":"zh","publisherId":"0449-749X_2011_3_14","title":"承钢钒钛磁铁矿烧结配矿正交优化研究","volume":"46","year":"2011"},{"abstractinfo":"承钢钒钛磁铁矿烧结面临的两大问题是机械强度差、低温还原粉化严重.从烧结过程、矿物组成、矿物结构、烧结矿强度和低温还原粉化几个方面对承钢高碱度烧结进行研究,得出碱度在2.0~2.3时转鼓强度与低温还原粉化率出现了低洼区现象,生产要避免此区间.","authors":[{"authorName":"孙艳芹","id":"5185e6fa-7d38-432b-9192-4d9e122eedfd","originalAuthorName":"孙艳芹"},{"authorName":"吕庆","id":"b24c973f-0439-4733-a75f-905d4ffe845b","originalAuthorName":"吕庆"},{"authorName":"李福民","id":"35919a09-f5c1-4774-bee2-2dc5c7ec8ec8","originalAuthorName":"李福民"}],"doi":"","fpage":"10","id":"048154e0-062e-4803-8031-b01031d968a0","issue":"6","journal":{"abbrevTitle":"GTYJ","coverImgSrc":"journal/img/cover/GTYJ.jpg","id":"29","issnPpub":"1001-1447","publisherId":"GTYJ","title":"钢铁研究"},"keywords":[{"id":"28010202-3389-4764-b828-ff9e62d6512d","keyword":"高碱度","originalKeyword":"高碱度"},{"id":"ca330ad6-f98d-4f36-a174-5dd1360d5316","keyword":"钒钛磁铁矿","originalKeyword":"钒钛磁铁矿"},{"id":"00819dd6-7315-4d28-9954-0f3b451ef5ab","keyword":"烧结矿强度","originalKeyword":"烧结矿强度"},{"id":"b9d64a96-c80b-4136-bab2-b622bfb8ce0d","keyword":"烧结过程","originalKeyword":"烧结过程"}],"language":"zh","publisherId":"gtyj201006003","title":"承钢高碱度钒钛磁铁矿烧结性能研究","volume":"38","year":"2010"},{"abstractinfo":"分析了我国核电承压设备(反应堆压力容器、主管道、蒸发器、稳压器和安全壳等)用钢的发展现状与发展方向,并指出某些元素在核电承压设备用钢中的作用及对其辐照脆化的影响。分析认为,为了确保核电承压设备用钢的使用性能和安全性能,必须严格控制残余元素水平、组织形态等,保证锻压比和后期退火工艺参数。","authors":[{"authorName":"刘文斌","id":"f1d30233-94f2-4fea-9df3-22ab2149df28","originalAuthorName":"刘文斌"},{"authorName":"李书瑞","id":"a336ef06-0338-448b-94b7-3df68e4720fb","originalAuthorName":"李书瑞"}],"doi":"","fpage":"58","id":"e651bbd2-5543-4316-b480-05d0d3fa7a8a","issue":"5","journal":{"abbrevTitle":"GTYJ","coverImgSrc":"journal/img/cover/GTYJ.jpg","id":"29","issnPpub":"1001-1447","publisherId":"GTYJ","title":"钢铁研究"},"keywords":[{"id":"0ba75750-a18a-4487-9505-02f10b8eaee9","keyword":"核电","originalKeyword":"核电"},{"id":"dc9d7e11-92af-4e31-a831-bf4698d0c854","keyword":"承压设备","originalKeyword":"承压设备"},{"id":"7ae4e2a4-355f-4ffd-bac1-52bbf12aa909","keyword":"辐照脆化","originalKeyword":"辐照脆化"},{"id":"0e22e56a-85ad-445d-86c4-df5d1c718add","keyword":"残余元素","originalKeyword":"残余元素"},{"id":"e9f2b21c-2f63-497b-a9ad-e83db4d9f3df","keyword":"AP1000","originalKeyword":"AP1000"}],"language":"zh","publisherId":"gtyj201105017","title":"我国核电承压设备用钢的发展现状与研究方向","volume":"39","year":"2011"},{"abstractinfo":"近日,承钢公司试炼管线钢X70、卷板C700L获成功,钢坯成分、气体含量、铸坯质量等指标均达到标准要求。管线钢X70是具有高强度、高韧性和良好焊接性能的高级别管线。提钒钢轧二厂在总结以往管线钢生产经验的基础上,于4月15日对X70钢组织试制,","authors":[],"doi":"","fpage":"20","id":"3a308534-2a40-42ae-bee1-af6b3c298eed","issue":"7","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"a55d3d91-be67-4b53-95a5-3cbaea713c2b","keyword":"X70","originalKeyword":"X70"},{"id":"229c0c98-a8a1-478d-9dfe-bcfd2d346d9f","keyword":"钢种","originalKeyword":"钢种"},{"id":"2158eb93-89e1-48dd-a9ce-d883101cfa13","keyword":"试炼","originalKeyword":"试炼"},{"id":"906e8506-bc5a-44e9-a176-5c0b370b2f6c","keyword":"管线钢","originalKeyword":"管线钢"},{"id":"e83a4549-5b86-445b-ba47-0daebf0e6426","keyword":"气体含量","originalKeyword":"气体含量"},{"id":"74f02146-34a8-46f2-b7ea-282a030135a0","keyword":"铸坯质量","originalKeyword":"铸坯质量"},{"id":"403dd87e-86e9-4960-8445-38f91521235d","keyword":"焊接性能","originalKeyword":"焊接性能"},{"id":"6fff9cb7-ca38-4391-a477-4492f2bfb1aa","keyword":"生产经验","originalKeyword":"生产经验"}],"language":"zh","publisherId":"gt201107006","title":"承钢公司成功试炼X70、C700L两钢种","volume":"46","year":"2011"},{"abstractinfo":"论文研究在生产条件下测取承钢100t转炉提钒冶炼的过程数据21炉,获得2718项宝贵的第一手实际生产数据。经统计分析,得到对熔池内元素成分变化的定量描述;进而对冶炼过程中钒元素和碳元素的选择性氧化进行了讨论。论文研究得到承钢100t转炉提钒的过程特征:(1)转炉提钒冶炼过程中熔池内各元素的变化曲线;(2)钒渣中V2O3的活度系数约为2.1410-4;(3)脱钒保碳临界温度在提钒冶炼过程中的变化曲线。对比转炉熔池实际温度的变化对承钢提钒冶炼现状进行了分析进而提出改进意见。\n关键词:转炉提钒,活度系数,脱钒保碳","authors":[{"authorName":"吴龙","id":"09b8112f-e581-4dcf-a694-b8a1a645b141","originalAuthorName":"吴龙"}],"categoryName":"|","doi":"","fpage":"14","id":"1ab5f780-e61f-43ea-9d42-b6f4d7ea65b3","issue":"12","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"bb804d43-f003-42fc-b84f-ebdbed6d172d","keyword":"转炉提钒;活度系数;脱钒保碳。","originalKeyword":"转炉提钒;活度系数;脱钒保碳。"}],"language":"zh","publisherId":"1001-0963_2010_12_6","title":"承钢100t转炉提钒的过程特征","volume":"22","year":"2010"},{"abstractinfo":"在生产条件下对承钢100t转炉提钒的过程特征进行了研究.首先,测取承钢100t转炉提钒冶炼的过程数据21炉,获得2 718项第一手实际生产数据.经统计分析,得到对熔池内元素成分变化的定量描述;进而对冶炼过程中钒元素和碳元素的选择性氧化进行了讨论.研究得到了转炉提钒冶炼过程中熔池内各元素的变化曲线、钒渣中V2O3的活度系数约为2.14×10-4、脱钒保碳临界温度在提钒冶炼过程中的变化曲线.对比转炉熔池实际温度的变化对承钢提钒冶炼现状进行了分析,进而提出了改进意见.","authors":[{"authorName":"吴龙","id":"88d10828-69f5-471f-b89c-da471be92bcb","originalAuthorName":"吴龙"},{"authorName":"李士琦","id":"8a94dbe9-2b51-450b-8bdc-5ccdde064dfa","originalAuthorName":"李士琦"},{"authorName":"迟桂友","id":"4d919fc2-066a-4d2e-987e-08fa7c8ead9c","originalAuthorName":"迟桂友"},{"authorName":"周学禹","id":"c73974d8-a2f1-401e-b5fd-2ddb953e6f02","originalAuthorName":"周学禹"},{"authorName":"杨超","id":"58c3e6cc-c970-4cc2-bfcf-2f761691b9a3","originalAuthorName":"杨超"}],"doi":"","fpage":"14","id":"5d2dd36d-fc0e-4cff-b858-e93f4afdb1b5","issue":"12","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"5684b6ff-c449-47d5-acd1-464f75bb122d","keyword":"转炉提钒","originalKeyword":"转炉提钒"},{"id":"be1f4948-d351-47c7-8ea3-172e70b9a089","keyword":"活度系数","originalKeyword":"活度系数"},{"id":"cc50bfd7-72d3-44cd-86d1-c1b73b53aa39","keyword":"脱钒保碳","originalKeyword":"脱钒保碳"}],"language":"zh","publisherId":"gtyjxb201012004","title":"承钢100t转炉提钒的过程特征","volume":"22","year":"2010"}],"totalpage":2332,"totalrecord":23312}