欢迎登录材料期刊网

材料期刊网

高级检索

为了研究激光冲击强化对镁合金表面形貌和电化学腐蚀性能的影响,采用电化学方法和钕玻璃脉冲激光(波长1064 nm,脉冲宽度20 ns)研究AZ31热轧板和AZ91-T6铸造镁合金在3.5%NaCl(质量分数)溶液中的动态极化曲线和电化学阻抗谱特征,并对镁合金三维表面形貌、腐蚀试样宏观形貌、自腐蚀电位和电化学阻抗谱进行测试与分析。结果表明:激光冲击改善AZ31热轧板和AZ91-T6镁合金的耐蚀性。当激光功率密度处于0.6~0.9 GW/cm2区间,镁合金腐蚀电位和电流密度分别出现峰值和谷值;当功率密度不小于1.0 GW/cm2时,镁合金腐蚀电位和电流密度分别正负移动,与冲击表面的形变、钝化膜和形貌密切相关。

In order to study the effect of laser shock processing (LSP) on the surface morphology and electrochemical corrosion resistance of magnesium alloys, the dynamic polarization curves and electrochemical impedance spectroscopy (EIS) of specimens of hot rolled sheet of AZ31 alloy and AZ91-T6 cast alloy in 3.5%NaCl (mass fraction) solution were investigated by electrochemical method and Nd:glass laser with the wavelength of 1064 nm and pulse width of 20 ns. The 3D surface morphology, macroscopic morphology of corrosion specimens, corrosion potential and electrochemical impedance spectroscopy (EIS) were also examined and analyzed. The results show that the corrosion resistance of hot rolled AZ31 alloy sheet and AZ91-T6 cast alloy are improved by LSP. When the laser power density is in the range from 0.6 GW/cm2 to 0.9GW/cm2, the peaks and valleys of the corrosion potential and the current density of magnesium alloy appear, respectively. When the power density is not less than 1.0 GW/cm2 , the corrosion potential and current density of magnesium alloy begin to move towards positive and negative directions, respectively, which are closely related to the deformation, passivating film and morphology of the impact surface.

参考文献

[1] WANG Lei, SHINOHARA T, ZHANG Bo-ping. Corrosion behavior of Mg, AZ31, and AZ91 alloys in dilute NaCl solutions [J]. Journal of Solid State Electrochemistry, 2010, 14(10):1897-1907.,2010.
[2] SALMAN S A, ICHINO R, OKIDO M. A Comparative electrochemical study of AZ31 and AZ91magnesium alloy[J]. International Journal of Corrosion, 2010, 2010:1-7.,2010.
[3] ZHANG Li-jun,ZHU Xu-bei,ZHANG Zhao,ZHANG Jian-qing.Electrochemical noise characteristics in corrosion process of AZ91D magnesium alloy in neutral chloride solution[J].中国有色金属学会会刊(英文版),2009(02):496-503.
[4] GONZALO G, NADINE P, BEMARD T, VINCENT V. Local and global electrochemical impedances applied to the corrosion behavior of an AZ91 magnesium alloy[J]. Corrosion Science, 2009, 51(8):1789-1794.,2009.
[5] WANG Lei, ZHANG Bo-ping, TADASHI S. Corrosion behavior of AZ91 magnesium alloy in dilute NaCl solutions[J]. Materials and Design, 2010, 31(2):857-863.,2010.
[6] ZHOU Liu-cheng, LI Ying-hong, HE Wei-feng, HE Guang-yu, NIE Xiang-fan, CHEN Dong-lin, LAI Zhi-lin, AN Zhi-bin. Deforming TC6 titanium alloys at ultrahigh strain rates during multiple laser shock peening[J]. Materials Science & Engineering A, 2013, 578:181-186.,2013.
[7] LIN B, LUPTON C, SPANRAD S, SCHOFIELD J, TONG J. Fatigue crack growth in laser-shock-peened Ti-6Al-4V aerofoil specimens due to foreign object damage[J]. International Journal of Fatigue, 2014, 59:23-33.,2014.
[8] LU J Z, LUO K Y, ZHANG T K, SUN G F, GU Y Y, ZHOU J Z, REN X D, ZHANG X C, ZHANG L F, CHEN K M, CUI C Y, JIANG Y F, FENG A X, ZHANG L. Grain refinement mechanism of multiple laser shock processing impacts on ANSI 304 stainless steel[J]. Acta Materialia, 2010, 58:5354-5362.,2010.
[9] CHEN Kang-min, ZHANG Chen-chao, YUAN Zhi-zhong, LU Jin-zhong, REN Xu-dong, LUO Xin-min. Deformation microstructures of austenitic stainless steel 2Cr13Mn9Ni4 under ultrafast strain rate by laser shock processing[J]. Materials Science & Engineering A, 2013, 587:244-249.,2013.
[10] 黄舒,周建忠,蒋素琴,盛杰,徐增闯,阮鸿雁.AZ31B镁合金激光喷丸后的形变强化及疲劳断口分析[J].中国激光,2011(08):70-76.
[11] 葛茂忠,张永康,项建云.AZ31B镁合金激光冲击强化及抗应力腐蚀研究[J].中国激光,2010(11):2925-2930.
[12] ZHAN Yong-kang, YOU Jian, LU Jin-zhong, CUI Cheng-yun, JIANG Yin-fang, REN Xu-dong. Effects of laser shock processing on stress corrosion cracking susceptibility of AZ31B magnesium alloy[J]. Surface & Coatings Technology, 2010, 204(24):3947-3953.,2010.
[13] 葛茂忠,项建云,张永康.激光冲击处理对AZ31B镁合金焊接件抗应力腐蚀的影响[J].中国激光, 39(12), 2012, 39(12):1-7. GE Maozhong, XIANG Jianyun, ZHANG Yongkang. Effect of laser shock processing on resistance to stress corrosion cracking of tungsten inert-gas welded AZ31B magnesium alloy [J]. Chinese Journal of Laser, 2012, 39(12):1-7.,2012.
[14] LI Xing-cheng, ZHANG Yong-kang, CHEN Ju-fang, LU Ya-lin. Effect of laser shock processing on stress corrosion cracking behavior of AZ31 magnesium alloy at slow strain rate[J]. Materials Science and Technology, 2013, 29(5):626-630.,2013.
[15] 李少哲,张凌峰,邢清蒲.激光冲击强化对AZ91镁合金的电化学腐蚀行为的影响[J].中国激光,2013(05):74-78.
[16] AUNG N N, ZHOU W. Effect of heat treatment on corrosion and electrochemical behaviour of AZ91D magnesium alloy[J]. Journal of Applied Electrochemistry, 2002, 32(12):1397-1401.,2002.
[17] 石凯,王日初,彭超群,解立川,金和喜,冯艳,陈雅谨.退火温度对镁合金阳极板材组织和性能的影响[J].中国有色金属学报,2012(06):1642-1649.
[18] 白力静,张华,袁颖,杨欣,王爱娟.β-Mg17Al12相含量对 AZ91镁合金腐蚀行为的影响[J].西安理工大学学报, 2011, 27(1):31-35. BAI Li-jing, ZHANG Hua, YUAN Ying, YANG Xin, WANG Ai-juan. Influence ofβ-Mg17Al12 phase content on corrosion behavior of AZ91 magnesium alloy[J]. Journal of Xi’an University of Technology, 2011, 27(1):31-35.,2011.
[19] 邢清蒲,张凌峰,李少哲,鲁金忠.激光冲击强化对2A02铝合金电化学腐蚀行为的影响[J].腐蚀科学与防护技术,2013(05):402-405.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%