欢迎登录材料期刊网

材料期刊网

高级检索

根据标准线性固体模型构造了一种预测纤维增强复合材料黏弹性行为的模型,推导出该模型的本构方程与松弛模量和蠕变柔量表达式,该模型经有限元仿真验证具有较高的精度。利用该模型研究了纤维几何特性对蠕变柔量和松弛模量的影响。结果表明,复合材料蠕变柔量与纤维比长度呈线性关系,而当纤维比半径增大到临界值后,其变化对材料的松弛模量和蠕变柔量影响减小,该临界值随纤维弹性模量的增大而减小;当纤维模量与基体模量相差较大时,复合材料的增强系数和减柔系数几乎不受时间变化的影响。

A visco-elastic model for fiber reinforced composites based on standard linear solid model was developed. Its governing equation as well as the formulae of relaxation modulus and creep compliance was deduced. The finite element method analysis testified that this model has a good accuracy. By virtue of this model, the effects of fiber geometric properties on relaxation modulus and creep compliance of the composite were also investigated. The results reveal that creep compliance of the composite is in a linear relation with fiber-matrix length ratio (FMLR). When fiber-matrix radius ratio (FMRR) exceeds a critical value, relaxation modulus and creep compliance change only slowly, and the critical value decreases with the increasing elastic modulus of fiber. Moreover, if fiber-matrix modulus ratio is quite large, fiber reinforcement coefficient and compliance-coefficient are time independent.

参考文献

[1] Mondali M,Abedian A,Ghavami A.A new analytical shear-lag based model for prediction of the steady state creepdeformations of some short fiber composites[J].Materials&Design,2009,30(4):1075-1084.
[2] Hsueh C H.Young’s modulus of unidirectional discontinuous-fibre composites[J].Composites Science and Technology,2000,60(14):2671-2680.
[3] Sharma M,Mohan Rao I,Bijwe J.Influence of fiberorientation on abrasive wear of unidirectionally reinforcedcarbon fiber:Polyetherimide composites[J].TribologyInternational,2010,43(5/6):959-964.
[4] Ghavami A,Abedian A,Mondali M.Finite differencesolution of steady state creep deformations in a short fibercomposite in presence of fiber/matrix debonding[J].Materials&Design,2009,31(5):2616-2624.
[5] Abadi M T.Micromechanical analysis of stress relaxationresponse of fiber-reinforced polymers[J].Composites Scienceand Technology,2009,69(7/8):1286-1292.
[6] Hernandez-Jimenez A,Hernandez-Santiago J,Macias-GarciaA,et al.Relaxation modulus in PMMA and PTFE fitting byfractional Maxwell model[J].Polymer Testing,2002,21(3):325-331.
[7] Halpin John C.Primer on composite materials[J].Materials&Design,1984,6(3):145-145.
[8] Eshelby J D.The determination of the elastic field of anellipsoidal inclusion and related problems[C]∥Proceedings ofthe Royal Society:Series A.London:Royal Society,1957.
[9] Eshelby J D.The elastic field outside an ellipsoidal inclusion[C]∥Proceedings of the Royal Society:Series A.London:Royal Society,1959.
[10] Mori T,Tanaka K.Average stress in matrix and averageelastic energy of materials with misfitting inclusions[J].ActaMetallurgica,1973,21(5):571-574.
[11] Hill R.A self-consistent mechanics of composite materials[J].Journal of the Mechanics and Physics of Solids,1965,13(4):213-222.
[12] Budiansky B.On the elastic moduli of some heterogeneousmaterials[J].Journal of the Mechanics and Physics of Solids,1965,13(4):223-227.
[13] Hancox N L.Primer on composite materials analysis[J].Materials&Design,1992,13(6):369.
[14] 李红周,贾玉玺,姜伟,等.纤维增强复合材料的细观力学模型以及数值模拟进展[J].材料工程,2006,65(8):57-60.
[15] Hsueh C H.Modified analysis for stress transfer in fibre-reinforced composites with bonded fibre ends[J].Journal ofMaterials Science,1995,30(1):219-224.
[16] Lai C,Ayyer R,Hiltner A,et al.Effect of confinement onthe relaxation behavior of poly(ethylene oxide)[J].Polymer,2010,51(8):1820-1829.
[17] 王世博,葛世荣,朱真才,等.氧化锌晶须增强尼龙复合材料蠕滑特性[J].机械工程学报,2010,46(5):63-67.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%