欢迎登录材料期刊网

材料期刊网

高级检索

采用聚丙烯酰胺凝胶法制备了NiFe2O4纳米颗粒,利用XRD、SEM、紫外-可见漫反射光谱、FTIR、XPS、VSM等对样品进行了表征分析.结果表明:分别以EDTA和乙酸作络合剂时,在600℃烧结温度下可制得单相NiFe2O4纳米颗粒;两个样品的颗粒形貌较为规整,主要以类球形为主,粒度分布较为均匀,平均粒径分别为55 nm和75nm.根据紫外-可见漫反射光谱求得样品的带隙为1.85 eV.Fe2p3/2和Ni2p3/2的XPS谱分析表明:样品为反尖晶石型结构,其化学通式可表示为(Fe3+)[Ni2+ Fe3+]O4.磁滞回线测量结果表明:样品具有良好的软磁特性,颗粒尺寸较小的样品其饱和磁化强度、剩余磁化强度和矫顽力相对较小.

参考文献

[1] D.E. Speliotis .Magnetic recording beyond the first 100 years[J].Journal of Magnetism and Magnetic Materials,1999(1/3):29-35.
[2] Zhao HX;Zheng Z;Wong KW;Wang SM;Huang BJ;Li DP .Fabrication and electrochemical performance of nickel ferrite nanoparticles as anode material in lithium ion batteries[J].Electrochemistry communications,2007(10):2606-2610.
[3] Kamble RB;Mathe VL .Nanocrystalline nickel ferrite thick film as an efficient gas sensor at room temperature[J].Sensors and Actuators, B. Chemical,2008(1):205-209.
[4] M.M. Rashad;O.A. Fouad .Synthesis and characterization of nano-sized nickel ferrites from fly ash for catalytic oxidation of CO[J].Materials Chemistry and Physics,2005(2/3):365-370.
[5] Reddy CVG.;Rao VJ.;Manorama SV. .Preparation and characterization of ferrites as gas sensor materials[J].Journal of Materials Science Letters,2000(9):775-778.
[6] Zhang, JL;Shi, JX;Gong, ML .Synthesis of magnetic nickel spinel ferrite nanospheres by a reverse emulsion-assisted hydrothermal process[J].Journal of Solid State Chemistry,2009(8):2135-2140.
[7] 马令娟,陈林深,陈诵英.制备工艺对NiFe2O4分解CO2活性的影响[J].无机化学学报,2007(02):329-334.
[8] Sousa MH.;Hasmonay E.;Depeyrot J.;Tourinho FA.;Bacri JC.;Dubois E. Perzynski R.;Raikher YL. .NiFe2O4 nanoparticles in ferrofluids: evidence of spin disorder in the surface layer[J].Journal of Magnetism and Magnetic Materials,2002(1):572-574.
[9] Kumar CS;Mohammad F .Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery.[J].Advanced drug delivery reviews,2011(9):789-808.
[10] Dao Thi Thuy Nguyet;Nguyen Phuc Duong;Le Thanh Hung .Crystallization and magnetic behavior of nanosized nickel ferrite prepared by citrate precursor method[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2011(23):6621-6625.
[11] Manish Srivastava;Animesh K. Ojha;S. Chaubey .Synthesis and optical characterization of nanocrystalline NiFe_2O_4 structures[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2009(1/2):515-519.
[12] 李桂金,白志民,金玥,傅瀛.自蔓延燃烧法合成NiFe_2O_4纳米粉体的机理研究[J].无机材料学报,2010(04):396-400.
[13] 朱传高,王凤武,徐迈,方文彦.在乙二醇溶液中合成复合金属醇盐和纳米NiFe2O4[J].无机化学学报,2009(07):1177-1181.
[14] 吕丽,边小兵,周剑平,朱刚强,刘鹏,陈险峙,刘倩.不同尺寸铁酸镍纳米晶体的水热合成[J].人工晶体学报,2010(04):977-981,987.
[15] Salavati-Niasari, M;Davar, F;Mahmoudi, T .A simple route to synthesize nanocrystalline nickel ferrite (NiFe2O4) in the presence of octanoic acid as a surfactant[J].Polyhedron: The International Journal for Inorganic and Organometallic Chemistry,2009(8):1455-1458.
[16] 张凌云,管航敏,黎汉生,朱德春,高大明.微乳液法制备几种纳米软磁铁氧体粉体及磁性能研究[J].人工晶体学报,2011(02):500-504.
[17] Passamani, E.C.;Segatto, B.R.;Larica, C.;Cohen, R.;Greneche, J.M. .Magnetic hysteresis loop shift in NiFe_2O_4 nanocrystalline powder with large grain boundary fraction[J].Journal of Magnetism and Magnetic Materials,2010(24):3917-3925.
[18] Jing Jiang;Yan-Min Yang .Facile synthesis of nanocrystalline spinel NiFe_2O_4 via a novel soft chemistry route[J].Materials Letters,2007(21):4276-4279.
[19] 王雄彪,张秋杰,张幺玄,陈厚和.低温燃烧合成法制备纳米NiFe2O4[J].材料导报,2012(06):70-72,80.
[20] 焦万丽,张磊.微波辐射低温固相反应法制备NiFe2O4纳米片晶[J].人工晶体学报,2008(05):1215-1218,1223.
[21] H. Yang;Z.E. Cao;X. Shen;J.L. Jiang;Z.Q. Wei;J.F. Dai;W.J. Feng .A Polymer-network Gel Route To Oxide Composite Nanoparticles With Core/shell Structure[J].Materials Letters,2009(8):655-657.
[22] S. Mickevicius;S. Grebinskij;V. Bondarenka .Investigation of epitaxial LaNiO_(3-x) thin films by high-energy XPS[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2006(1/2):107-111.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%