欢迎登录材料期刊网

材料期刊网

高级检索

Conventional crystalline materials usually exhibit a ductile to brittle transition behaviour at low temperatures. An increase in the strength is always accompanied by a decrease in the plasticity. Here the authors report on a significant enhancement in both compressive strength and plasticity of a Ti-based bulk metallic glass (BMG) deformed at low temperatures. The ductilization of the BMG system can be evidently attributed to the formation of dense shear bands and the rotation mechanism of shear bands. The cryogenic Surroundings can effectively slow down the mobility and diffusion of the atoms and consequently, suppress the nucleation and growth of nanocrystals during the deformation process, allowing the simultaneous improvement in the mechanical responses of the glassy alloy to compressive loading far below the ambient temperature. (C) 2008 Elsevier B.V. All rights reserved.

参考文献

上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%