利用等离子电弧加热器结合数值模拟,考察了燃烧合成制备的TiB2-Cu金属陶瓷复合材料热冲击损伤行为;通过热物理性能实验数据,模拟了材料在高温环境中非均匀热传输边界条件作用下瞬态温度场和热应力场的分布.结果表明:材料中心位置处于压应力,并且沿径向递减:当越过电弧加热区,压应力逐渐转变为拉应力,并且最大拉应力处于试样周边区域;在热冲击条件下的损伤行为是热裂纹产生于试样边缘,然后沿径向中心区域扩展;等离子电弧加热实验也证实了理论模型的合理性.
参考文献
[1] | Laub B;Venkatapathy E .[J].ESA SP,2004,544:239. |
[2] | Cho J R;Ha D Y .[J].Materials Science and Engineering,2001,302:187. |
[3] | Ju D Y.[A].Gold Coast(Queensland Australia),1997:797. |
[4] | Shigeru Akiyama;Shigeyasu Amada .Thermal shock strength of Al{sub}2O{sub}3 by laser irradiation method[J].Ceramics International,2001(2):171-177. |
[5] | Akiyama S;Amada S .[J].Fusion Technology,1993,23:426. |
[6] | Panda P K;Kannan T S;Dubois J .[J].Science and Technology of Advanced Materials,2002,3:327. |
[7] | Bradt C;Evants A G;Lewis Ⅲ D.Fracture Mechanics of Ceramics[M].New York:Plenum Press,1983:487. |
[8] | Wei G C;Walsh J .[J].Journal of the American Ceramic Society,1989,72(05):286. |
[9] | Sata S;Kurumada A;Kawamata K.Key Engineering Materials[A].,1991:465. |
[10] | Sagnier P;Verant J L .[J].Aerospace Science and Technology,1998,7:425. |
[11] | Hasselman D P H;Heller R A.Thermal Stress in Severe Environments[M].New York:Plenum Press,1980:553. |
[12] | Zhang Xinghong;Han Jiecai;He Xiaodong et al.[J].Materials Letters,2002,56(03):183. |
[13] | Tomba A G M;Cavalieri A L .[J].Materials Science and Engineering,2000,276:76. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%