对含有不同体积分数β相的镁-铝合金进行实验室模拟的NaCl污染微粒诱发的大气腐蚀实验,采用扫描电镜(SEM)对腐蚀产物的截面形貌以及去除腐蚀产物后基体的腐蚀形貌进行观察.结果发现,镁铝合金的大气腐蚀源自NaCl污染微粒沉积的位置.腐蚀增重结果表明随着β相体积分数的增加,镁铝合金的腐蚀程度加剧.这是因为β相的增加,增大了微电偶电池的阴极面积.可见,在双相镁铝合金中,随着β相的增加,β相与α相之间的腐蚀微电偶作用增强.
参考文献
[1] | Stralmarnn M,Streeckel H.On the atmospheric corrosion of metals which are covered with thin electrolyte layers[J].Corros.Sci.,1990,30:681. |
[2] | Zakiponr S,Leygraf C.Quartz crystal microbelance applied to study atmospheric corrosion of metals[J].Br.Corros.J.1992,27(4):295. |
[3] | Neufeld A K,Cole I S,Bond A M,et al.The initiation mechanism of corrosion of zinc by sodium chloride particle deposition[J].Corros.Sci.,2002,44:555. |
[4] | 林翠,李晓刚.NaCl沉积和SO2污染对镁合金初期大气腐蚀行为的影响[J].北京科技大学学报,2004,26(5):524. |
[5] | 万晔,严川伟.几种盐沉积和微量SO2对AZ91D镁合金大气腐蚀的协同作用[J].中国有色金属学报,2006,16(1):176. |
[6] | 肖葵,董超芳,李晓刚等.在污染大气环境中NaCl对镁合金的协同作用[J].装备环境工程,2006,3(6):26. |
[7] | Feliu S,MoroiUo M,S Feliu Jr.The prediction of atmospheric corrosion from meteorological and pollution parameters-I.Annual corrosion[J].Corros.Sci.,1993,34 (3):403. |
[8] | Bengtsson B D,Lindstrom R,Svensson J E,et al.The effect of CO2 on the NaCl-induced atmospheric corresion[J].J.Electrochem.Sec.,2001,148(4):127. |
[9] | Lindstrom R,Svensson J E,Johnansson L G.The influence of salt deposits on the atmospheric corrosion of zinc-The important role of the sodium ion[J].J.Electrochem.Soc.,2002,149 (2):57. |
[10] | Qu Q,Yan C W,Wan Y,et al.Effects of NaCl and SO2 on the initial atmospheric corrosion of zinc[J].Corros.Sci.,2002,44 (12):2789. |
[11] | H·克舍著(西德),吴阴顺译.金属腐蚀[M].2版.北京:化学工业出版社,1990:316. |
[12] | Song G L,Atrens A,Dargusch M.Influence of microstructure on the corrosion of dieeast AZ91D[J].Corros.Sci.,1999,41:249. |
[13] | Song G L,Atrens A,Wu X L,et al.Corrosion behaviour of AZ21,AZ501 and AZ91 in sodium chloride[J].Corros.Sci.,1998,40(10):1769. |
[14] | Ambat R,Aung N N,Zhou W.Evaluation of microstructuro effects on corrosion behavionr of AZ91D magnesium alloy[J].Corros.Sci.,2000,42:1433. |
[15] | Mathieu S,Rapin C,Hazan J,et al.Corrosion behavior of high pressure die-cast and semi-solid cast AZ91D alloys[J].Corros.Sci.,2002,44:2737. |
[16] | Bollerini G,Bardi U,Bignucolo R,et al.About some corrosion mechanisms of AZ91D magnesium alloy[J].Corros.Sci.,2005,47:2173. |
[17] | Hocbe H,Blawert C,Broszeit E,et al.Galvanic corrosion propertios of differently PVD-treated magnesium die cast alloy AZ91[J].Surf.Coat.Technol.,2005,193:223. |
[18] | Song G L,Atrens A.Understanding magnesium corrosion[J].Adv.Eng.Mater.,2003,5(12):837. |
[19] | Qu Q,Yan C W,Li L,et al.Initial atmospheric corrosion of zinc in the presence of NH4Cl[J].Acta Metall.Sini.(English Letters),2004,17(2):161. |
[20] | 屈庆,严川伟,张蕾等.NaCl和SO2在A3钢初期大气腐蚀中的协同效应[J].金属学报,2002,38(10):1062. |
[21] | 万晔.污染因紊对金属大气腐蚀的影响机理研究[D].中国科学院金属研究所博士学位论文,2005:80. |
[22] | 屈庆,严川伟,白玮等.NaCl在A3钢大气腐蚀中的作用[J].中国腐蚀与防护学报,2003,23(3):160. |
[23] | 谭军,谢天生.AZ91D镁合金大气腐蚀初期产物的结构分析[J].电子显微学报,2005,24(4):310. |
[24] | Lindstrom R,Johansson L G,Thompson G E,et al.Corrosion of magnesium in humid air[J].Corros.Sci.,2004,46:1441. |
[25] | Jonsson M,Thierry D,LeBozec N.The influence of microstructure on the corrosion behaviour of AZ91D studied by scanning Kelvin probe force microscopy and scanning Kelvin probe[J].Corros.Sci.,2006,48(5):1193. |
[26] | Chen Z Y,Persson D,Leygraf C.Initial NaCl-particle induced atmospheric corrosion of zinc-effect of CO2 and SO2[J].Corros.Sci.,2008,50(1):111. |
[27] | Abd El Ael E E.Effect of Cl-anions on zinc passivity in borate solution[J].Corros.Sci.,2000,42:1. |
[28] | Abd El Haleem S M.Dissolution current and pitting potential of zinc in KOH solution in rehation to the concentration of aggressive ions[J].Br.Corros.J.,1976,11:215. |
[29] | Abd El Rehim S S,Abd El Wahab S M,Fouad E E,et al.Passivity and passivity breakdown of zinc anode in alkaline medium[J].Mater.Corros.,1995,46:633. |
[30] | Menezes S,Haak R,Hagen G,et al.Photoelectrocbemical characterization of corrosion inhibiting oxide films on aluminum and its alloys[J].J.Electrochem.Soc.,1989,136:1884. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%