欢迎登录材料期刊网

材料期刊网

高级检索

采用热物理模拟压缩实验获得退火态20MnNiMo钢在不同温度和应变速率下的真应力-应变曲线,作为计算动态再结晶模型的底层数据.基于d σ/dε-σ曲线,识别了真应力-应变曲线上能表征动态再结晶演变过程的特征点:临界应变εc,峰值应变εp及最大软化速率应变ε*.引入表征晶体动力学的双曲正弦模型,通过线性回归求解得到动态再结晶激活能Q,建立流变应力本构方程.设计无量纲参数Z/A,对已修正的Avrami方程作线性回归分析,表征了不同变形条件对退火态20MnNiMo钢动态再结晶体积分数演变的影响,并详细描述了动态结晶对应力软化的影响.结果表明:在高应变速率下,在应变后期发生剧烈软化;在中等应变速率下,发生剧烈的软化后趋于稳定;在低应变速率条件下,出现硬化和软化的周期性循环.

参考文献

[1] 迟露鑫,麻永林,邢淑清,赵勇桃,陈芙蓉,陈重毅.核电SA508-3钢在不同冷速下的显微组织[J].内蒙古科技大学学报,2010(02):127-131.
[2] Zhu Feng .The regulation of recrystallization softening on steel of asme SA508-3[J].Journal of Plasticity Engineering,2000,7(01):1-3.
[3] Zhu Feng .The control forging for microstructure and property on heavy forgings in nuclear power plant[J].Journal of Plasticity Engineering,1995,2(01):8-14.
[4] McQueen H J;Yue S;Ryan N D et al.Hot working characteristics of steels in austenitics state[J].Journal of Materials Processing Technology,1995,53(1/2):293-310.
[5] Shi H;McLaren AJ;Sellars CM;Shahani R;Bolingbroke R .Constitutive equations for high temperature flow stress of aluminium alloys[J].Materials Science and Technology: MST: A publication of the Institute of Metals,1997(3):210-216.
[6] Sellars C M;Tegart W J M .On the mechanism of hot deformation[J].Acta Metallurgica,1996,14(09):1136-1138.
[7] Zener C;Hollomon H .Effect of strain-rate upon the plastic flow of steel[J].Journal of Applied Physics,1944,15(01):22-27.
[8] S I Kim;Y C Yoo .Dynamic recrystallization behavior of AISI 304 stainless steel[J].Materials Science and Engineering A,2010,311(1-2):108-113.
[9] D.Ponge;G.Gottstein .Necklace formation during dynamic recrystallization: mechanisms and impact on flow behavior[J].Acta materialia,1998(1):69-80.
[10] Yue, CX;Zhang, LW;Liao, SL;Pei, JB;Gao, HJ;Jia, YW;Lian, XJ .Research on the dynamic recrystallization behavior of GCr15 steel[J].Materials Science and Engineering. A, Structural Materials: Properties, Microstructure and Processing,2009(1/2):177-181.
[11] S.F.MEDINA;C.A.HERNANDEZ .THE INFLUENCE OF CHEMICAL COMPOSITION ON PEAK STRAIN OF DEFORMED AUSTENITE IN LOW ALLOY AND MICROALLOYED STEELS[J].Acta materialia,1996(1):149-154.
[12] S.F.MEDINA;C.A.HERNANDEZ .MODELLING OF THE DYNAMIC RECRYSTALLIZATION OF AUSTENITE IN LOW ALLOY AND MICROALLOYED STEELS[J].Acta materialia,1996(1):165-171.
[13] Kim S I;Yoo Y C .Dynamic recrystallization behavior of AISI 304 stainless steel[J].Materials Science and Engineering A,2010,311(1-2):108-113.
[14] D.Ponge;G.Gottstein .Necklace formation during dynamic recrystallization: mechanisms and impact on flow behavior[J].Acta materialia,1998(1):69-80.
[15] Yue, CX;Zhang, LW;Liao, SL;Pei, JB;Gao, HJ;Jia, YW;Lian, XJ .Research on the dynamic recrystallization behavior of GCr15 steel[J].Materials Science and Engineering. A, Structural Materials: Properties, Microstructure and Processing,2009(1/2):177-181.
[16] McQueen H J;Yue S;Ryan N D et al.Hot working characteristics of steels in austenitics state[J].Journal of Materials Processing Technology,1995,53(1/2):293-310.
[17] Shi H;McLaren AJ;Sellars CM;Shahani R;Bolingbroke R .Constitutive equations for high temperature flow stress of aluminium alloys[J].Materials Science and Technology: MST: A publication of the Institute of Metals,1997(3):210-216.
[18] Sellars C M;Tegart W J M .On the mechanism of hot deformation[J].Acta Metallurgica,1996,14(09):1136-1138.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%