欢迎登录材料期刊网

材料期刊网

高级检索

研究了AZ31镁合金在挤压过程中长条晶粒的形成机理、挤压工艺对形成长条晶粒的影响以及长条状晶粒对室温拉伸变形断裂的影响。为消除长条晶粒,进行了不同工艺条件下的退火处理。结果表明:在挤压比为4.5时,长条状晶粒比较粗大,利用退火处理无法消除;当挤压比提高到10.1时,长条状晶粒比较狭窄,利用退火处理能有效地改善组织均匀性,较好的消除长条晶粒,其平均晶粒尺寸大约为20μm。

Mechanism of elongated grains formation during extrusion and effect of extrusion process on the elongated grains were investigated.Based on tensile tests at room temperature,the influence of elongated grains on fracture behavior of the alloy was also discussed.Different processes of annealing treatment were carried out to eliminate elongated grains in the extruded alloy with different extrution ratios.The results show that the elongated gains are coarser after extrusion at extrusion ratio of 4.5,and utilizing annealing treatment can not eliminate the elongated grains.However,elongated grains are much narrower when extrusion ratio reaches 10.1,utilizing annealing treatment can improve the microstructure homogenization effectively,the elongated grains are almost eliminated and the average size of final grains is about 20 μm.

参考文献

[1] Shyong Lee;Yung-Hung Chen;Jian-Yih Wang .Isothermal sheet formability of magnesium alloy AZ31 and AZ61[J].Journal of Materials Processing Technology,2002(1/2):19-24.
[2] Agnew SR;Duygulu O .Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B[J].International Journal of Plasticity,2005(6):1161-1193.
[3] 侯利锋,卫英慧,史学斌,许并社.AZ91D镁合金单向压缩条件下的变形组织[J].材料热处理学报,2010(08):109-112.
[4] 刘天模,刘世宇,彭天成,刘建忠,刘宇,潘复生.AZ31镁合金变通道角挤压工艺[J].材料热处理学报,2009(05):64-67,73.
[5] 毛献昌,杨连发,陈奉军.AZ31B镁合金板液压-机械拉深试验研究[J].锻压技术,2009(01):49-52.
[6] 黄光胜,汪凌云,黄光杰.镁合金挤压材的组织演变[J].轻合金加工技术,2004(09):35-37.
[7] 张青来,胡永学,王粒粒,孙毓蔚,周娅莉.挤压后交叉轧制的镁合金薄板组织研究[J].热加工工艺,2007(09):1-5.
[8] Y.V.R.K. Prasad;K.P. Rao .Effect of homogenization on the hot deformation behavior of cast AZ31 magnesium alloy[J].Materials & design,2009(9):3525-3536.
[9] Kaibyshev R;Sitdikov O .Dynamic recrystallization of magnesium at ambient temperature[J].Zeitschrift fur Metallkunde,1994,85:738-743.
[10] R.O.Kaiyshev;O.S.Sitdikov .On the Role of Twinning in Dynamic Recrystallization[J].Физика металлов и металловедение,2000(4):70-77.
[11] Yin, SM;Yang, F;Yang, XM;Wu, SD;Li, SX;Li, GY .The role of twinning-detwinning on fatigue fracture morphology of Mg-3%Al-1%Zn alloy[J].Materials Science and Engineering. A, Structural Materials: Properties, Microstructure and Processing,2008(1/2):397-400.
[12] D. Ando;J. Koike;Y. Sutou .Relationship between deformation twinning and surface step formation in AZ31 magnesium alloys[J].Acta materialia,2010(13):4316-4324.
[13] Yoo M H .Relationship between deformationtwinningand surface step formation in AZ31 magnesium alloys[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1981,12(03):409-418.
[14] G. Ben Hamu;D. Eliezer;L. Wagner .The relation between severe plastic deformation microstructure and corrosion behavior of AZ31 magnesium alloy[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2009(1/2):222-229.
[15] Yi, SB;Brokmeier, HG;Letzig, D .Microstructural evolution during the annealing of an extruded AZ31 magnesium alloy[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2010(1):364-371.
[16] H.K. Kim;W.J. Kim .Microstructural instability and strength of an AZ31 Mg alloy after severe plastic deformation[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2004(1/2):300-308.
[17] Wang, MT;Zong, BY;Wang, G .Grain growth in AZ31 Mg alloy during recrystallization at different temperatures by phase field simulation[J].Computational Materials Science,2009(2):217-222.
[18] Qing Miao;Lianxi Hu;Xin Wang .Grain growth kinetics of a fine-grained AZ31 magnesium alloy produced by hot rolling[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2010(1/2):87-90.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%