欢迎登录材料期刊网

材料期刊网

高级检索

建立无弯曲纤维织物(Non-crimped fabrics,NCF)的几何结构单胞,应用树脂在纤维束内与束间耦合流动的模型,数值模拟树脂的细观流动行为,结合Darcy定律,计算单胞的面内等效渗透率,并对计算方案进行验证。在此基础上,探讨织物的纤维束间距离、纤维束高度以及束内渗透率等细观结构参数与单胞面内等效渗透率之间的关系。结果表明:单胞面内等效渗透率随纤维束间距离的增大而增大,其倒数的对数之间呈正的线性关系;纤维束高度对单胞面内等效渗透率的影响类似于纤维束间距离对其的影响;单胞面内等效渗透率随纤维束内渗透率的增加而线性增加。

A unit cell of the non-crimped fabrics' geometrical structure was established,and the meso-level resin flow behavior within it was simulated by coupling the inter-tow and intra-tow flows.According to the Darcy's law,the equivalent in-plane permeability was calculated.And then this method was verified.Based on the above work,the relationship between the in-plane permeability of the unit cell and the meso-level structural parameters,such as the distance between fiber bundles,the fiber bundle's height and permeability,was investigated.The results show that the in-plane permeability of the unit cell increases with the increase of the distance between fiber bundles,and a positive linear relationship exists between the logarithms of their reciprocals;the height of fiber bundles has the similar effect on the permeability as the distance between fiber bundles does;the in-plane permeability of the unit cell increases linearly with the increase of the permeability of fiber bundles.

参考文献

[1] Keller J B. Viscous flow through a grating or lattice of cylinders [J]. Journal of Fluid Mechanics, 1964, 18(1): 94-96.
[2] Gebart B R. Permeability of unidirectional reinforcements for RTM [J]. Journal of Composite Materials, 1992, 26(8): 1100-1133.
[3] Happel J. Viscous flow relative to arrays of cylinders [J]. AIChE Journal, 1959, 5(2): 174-177.
[4] Kuwabura S. The force experienced by randomly distributed parallel circular cylinders or spheres in a viscous flow at small Reynolds numbers [J]. Journal of the Physics Society of Japan, 1959, 14: 527-532.
[5] Lam R C, Kardos J L. The permeability and compressibility of aligned and cross-plied carbon fiber beds during processing of composites [J]. Polymer Engineering & Science, 1991, 31(14): 1064-1070.
[6] Gutowski T G, Morigaki T, Cai Z. The consolidation of laminate composites[J]. Journal of Composite Materials, 1987, 21(2): 172-188.
[7] Pillai K M, Advani S G. Numerical and analytical study to estimate the effect of two length scales upon the permeability of a fibrous porous medium [J]. Transport in Porous Media, 1995, 21(1): 1-17.
[8] Yang J, Jia Y, Sun S, et al. Mesoscopic simulation of the impregnating process of unidirectional fibrous preform in resin transfer molding [J]. Materials Science and Engineering A, 2006, 435/436: 515-520.
[9] Ngo N D, Tamma K K. Microscale permeability predictions of porous fibrous media [J]. International Journal of Heat and Mass Transfer, 2001, 44(16): 3135-3145.
[10] Nordlund M, Lundstrom T S. Effect of multi-scale porosity in local permeability modelling of non-crimp fabrics [J]. Transport in Porous Media, 2008, 73(1): 109-124.
[11] Ma Y L, Shishoo R. Permeability characterization of different architectural fabrics [J]. Journal of Composite Materials, 1999, 33(8): 729-750.
[12] Pitchumani R, Ramakrishnan B. A fractal geometry model for evaluating permeabilities of porous preforms used in liquid composite molding [J]. International Journal of Heat and Mass Transfer, 1999, 42(12): 2219-2232.
[13] Yu B M, Lee L J. A fractal in-plane permeability model for fabrics [J]. Polymer Composites, 2002, 23(2): 201-221.
[14] Louis M, Huber U. Investigation of shearing effects on the permeability of woven fabrics and implementation into LCM simulation [J]. Composites Science and Technology, 2003, 63(14): 2081-2088.
[15] Chen X M, Papathanasiou T D. Micro-scale modeling of axial flow through unidirectional disordered fiber arrays [J]. Composites Science and Technology, 2007, 67(7/8): 1286-1293.
[16] Sobera M P, Kleijn C R. Hydraulic permeability of ordered and disordered single-layer arrays of cylinders [J]. Physical Review E, 2006, 74(3): 10-19.
[17] Nabovati A, Llewellin E W, Sousa A C M. A general model for the permeability of fibrous porous media based on fluid flow simulations using the lattice Boltzmann method [J]. Composites Part A: Applied Science and Manufacturing, 2009, 40(6/7): 860-869.
[18] Song Y S, Heider D, Youn J R. Statistical characteristics of out-of-plane permeability for plain-woven structure [J]. Polymer Composites, 2009, 30(10): 1465-1472.
[19] 陈萍, 李宏运, 陈祥宝. 铺层方式对织物渗透率的影响[J]. 复合材料学报, 2001, 18(1): 30-33.
[20] 简抗抗, 张佐光, 顾轶卓, 等. 不同堆积状态下饱和渗透率实验研究[J]. 复合材料学报, 2006, 23(1): 31-36.
[21] 吴晓青, 李嘉禄, 刘井红. 缝合预制件在RTM中的渗透性[J]. 复合材料学报, 2008, 25(3): 93-97.
[22] Lundstrom T S. The permeability of non-crimp stitched fabrics [J]. Composites Part A: Applied Science and Manufacturing, 2000, 31(12): 1345-1353.
[23] 查金荣, 陈家镛. 传递过程原理 [M]. 北京: 冶金工业出版社, 1997.
[24] Nordlund M, Lundstrom T S. Numerical study of the local permeability of noncrimp fabrics [J]. Journal of Composite Materials, 2005, 39(10): 929-947.
[25] Nordlund M, Lundstrom T S, Frishfelds V, et al. Permeability network model for non-crimp fabrics [J]. Composites Part A: Applied Science and Manufacturing, 2006, 37(9): 826-835.
[26] Whitaker S. Flow in porous media Ⅰ: A theoretical derivation of Darcy's law [J]. Transport in Porous Media, 1986, 1(1): 3-25.
[27] Berdichevsky A L, Cai Z. Preform permeability predictions by self-consistent method and finite element simulation [J]. Polymer Composites, 1993, 14(2): 132-143.
[28] Gutowski T G. 先进复合材料制造技术[M]. 李宏运, 译. 北京: 化学工业出版社, 2004.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%