采用熔融共混纺丝工艺制备多壁碳纳米管(MWCNTs)质量分数分别为0.1%和0.5%的MWCNTs/PEEK(聚醚醚酮)复合纤维,研究了紧张热定型过程中热定型温度和降温速率对复合纤维结构和性能的影响。采用TEM、SEM、DSC、DMA、XRD和单纤维电子强力仪研究了复合纤维的形貌、结构和性能。结果表明:复合纤维的热定型温度和冷却降温速率对其杨氏模量、拉伸强度和断裂伸长率均有影响,经过热定型处理,复合纤维内部MWCNTs的取向程度明显提高。280℃热定型、1.5℃/min冷却纤维的拉伸强度达384MPa,杨氏模量为0.62GPa,断裂伸长率28%,拉伸强度和杨氏模量分别较130℃热定型纤维提高了147%和19%,获得了优化复合纤维性能的最佳工艺条件。
Multi - walled carbon nanotubes ( MWCNTs)/poly ( ether ether ketone) (PEEK) composite fibers containing 0.1% and 0. 5% mass fraction of MWCNTs were melt-spun, respectively. The effects of heat-set temperature and cooling rates on the structures and properties of the composite fibers were studied in the process of tension heat-setting process. TEM, SEM, DSC, DMA, XRD and tensile tester were used to characterize the morphology, structures and properties of the fibers. The results show that, the heat-set temperature and cooling rates affect the Young's modulus, tensile strength and strain of the fibers. The heat-setting improves the orientation of MWCNTs in composite fibers. The tensile strength, Young% modulus and strain of the fiber heat-set at 280 ℃ and cooling rate of 1.5℃/min are 384 MPa, 0. 62 GPa and 28%, respectively. The tensile strength and Young's modulus are about 147% and 19% higher than that of the fiber heat-set at 130 ℃ and cooling rate of 1.5℃/min. Therefore, the optimized heat-set condition is obtained for the MWCNTs/PEEK composite fibers.
参考文献
[1] | Searle O B, Pfeiffer R H. Victrex poly(ethersulfone) (PES) and vietrex poly(ether ether ketone) (PEEK) [J]. Polymer Engineering Science, 1985, 25(8): 474-476. |
[2] | GopaI S N, Sravendra R, Whan C J, et al. Polymer nanocomposites based on functionalized carbon nanotubes [J].Progress in Polymer Science, 2010, 35: 837-867. |
[3] | Sengupta R, Ganguly A, Sahharwal S, et al. MWCNT reinforced polyamide - 66 films: Preparation, characterization and properties [J]. Journal of Material Science, 2007, 42(3) 923-934. |
[4] | 王志苗,白世河,张兴祥,等.溶液共混法制备碳纳米管/尼龙66复合材料及其性能[J].复合材料学报,2010,27(1):12-17. |
[5] | 王志苗,张兴祥,王学晨,等.熔融共混法制备羧基化多壁碳纳米管/PA66复合纤维及其性能[J].复合材料学报,2011,28(2):16-21. |
[6] | Sandier J, Windle A H, Werner P, et al, Carbon-nanofiber- reinforced poly(ether ether ketone) fibers [J]. Journal of Materials Science, 2003, 38: 2135-2141 |
[7] | Rong C R, Ma G, Zhang S L. Effect of carbon nanotubes on the mechanical properties and crystallization behavior of poly (ether ether ketone) [ J ]. Composites Science and Technology, 2010, 70: 380-386. |
[8] | 朱国强.国外锦纶66帘子线纺丝油剂应用初探[J].广东化纤,1996(1):17-19. |
[9] | Diez-Pascual A M, Naffakh M, G6mez M A. Development and characterization of PEEK/carbon nanotube composites [J]. Carbon, 2009, 47: 3079-3090. |
[10] | Blundell D J, Osborn B N. The morphology of poly (aryl- ether-ether-ketone)[J].Polymer, 1983, 24: 953-958. |
[11] | 胡安,刘鹏清,徐建军,等.聚醚醚酮纤维的拉伸定形后处理研究[J].合成纤维,2008,37(9):21-25. |
[12] | 于建明,边栋材,周晓峰,等.热定型对PEEK纤维性能影响[J].高分子材料科学与工程,1997,13:106-109. |
[13] | American Society for Testing and Materials. ASTN STP 1110 Cooling rate effects in carbon fiber/PEEK composites [S]. Philadelphia, United States: ASTM, 1991 |
[14] | Partridge I K, Davies P, Parker D S, et al. Yield and fracture in PES and PEEK matrix polymers and their composites [C]// PRI Polymers for Composite Conference. Cranfield, UK: Plastics and Rubber Inst, 1987: 1-12 |
[15] | Uralil F S, Newaz G M, Lustiger A. Processing effects and damage tolerance in poly (etheretherketone) composites [J]. Polymer Composite, 1992, 13: 7-14. |
[16] | Hay J N, Kemmish D J, Langford J I, et al. The structure of crystalline PEEK [J]. Polymer Communication, 1984, 25: 175-178. |
[17] | Shimizu J, Kikutani T, Ohkoshi Y, et al. Melt-spinning of polyether- ether- ketone (PEEK) and the structure and properties of resulting tiber [J]. The Society of Fiber Science and Teehnology: Japan, 1987, 43(10): 507-519. |
[18] | OhkoshiY, Ohshima H, Matsuhisa T. Structures and mechanical properties of PEEK filaments [J]. The Society of Fiber Science and Technology: Japan, 1990, 46(3): 87-92. |
[19] | Deng F, Ogasawara T, Takada N. Experimental characterization of poly (ether ether ketone)/multi-wall carbon nanotube composites [J]. Key Engineering Materials, 2007, 334/335: 721-724. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%