欢迎登录材料期刊网

材料期刊网

高级检索

本文基于分形理论提出了一个假说,认为实际流体分子的无规运动可以用分数布朗函数作为概率密度函数来描写,而其分数维数可根据分子运动的图像确定.本文以流体Ar作为对象进行了分子动力学模拟,根据分子动力学模拟的结果提取了运动的分数维数,构造了描述分子无规运动的分数布朗函数,并对所提出的假说进行了验证.

参考文献

[1] Richard J S .Molecular Simulation of Fluids,Theory[Z].Algorithms and Object-Orientation Amsterdam Elsevier,1999.
[2] Smit B;Karaborni S;Siepmann J I .Computer Simulation of Vapor-liquid Phase Equilibria of N-alkenes[J].Journal of Chemical Physics,1995,102(05):2126-2140.
[3] Zeng P.;Clapp PC.;Rifkin JA.;Zajac S. .Nanoparticle sintering simulations[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,1998(2):301-306.
[4] Schiotz J;Tolla F D D;Jacobsen W .Softening of Nanocrystalline Metals at Very Small Grain Size[J].Nature,1998,391(6667):561-563.
[5] Swygenhoven H V;Caro A .Molecular Dynamics Computer Simulation of Nanophase Ni: Structure and Mechanical Properties[J].Nano-Structured Materials,1997,9(07):669-692.
[6] Phillpot S R;Wolf D;Gleiter H .Molecular-Dynamics Study of Synthesis and Characterization of A Fully Dense,Three Dimensionally Nanocrystallina Materials[J].Journal of Applied Physics,1995,78(02):847-861.
[7] Falconer K J.The Geometry of Fractal Sets[M].Cambridge:Cambridge University Press,1986:145-149.
[8] 谢和平;张永平;宋晓秋.分形几何--数学基础及应用[M].重庆:重庆大学出版社,1994:159-166.
[9] 王东生;曹磊.混沌.分形及其应用[M].合肥:中国科学技术大学出版社,1995:257-258.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%