本文利用第一性原理研究了化学掺杂(N和B)对Armchair石墨纳米带(AGNR)电子性质的影响.结果发现:N和B原子有不同的最佳掺杂位置,掺杂使AGNR分别成为n型或P型半导体.纳米带宽度不同时,掺杂对AGNR电子结构如能级、能隙、轨道分布等有不同影响.
参考文献
[1] | Wakabayashi K;Takane Y;Yamamoto M et al.Electromc Transport Properties of Graphene Nanoribbons[J].New Journal of Physics,2009,11:095016. |
[2] | Araidai M;Nakamura Y;Wanatabe K .Field Emission Mechanism of Graphite Nanostructures[J].Physical Review B,2004,70:245410. |
[3] | Accio R F;Denis P A;Pardo H et al.Mechanical Properties of Graphene Nanoribbons[J].Journal of Physics: Condensed Matter,2009,21:285304. |
[4] | Gao Y;Hao P .Mechanical Properties of Monolayer Graphene under Tensile and Compressive Loading[J].Physica E:Low-dimensional Systems and Nanostructures,2009,41:1561. |
[5] | Noguchi T;Shimamoto T;Watanabe K .Photoabsorption Spectra of Graphitie Nanestructures by Time-Dependent Density-Functional Theory[J].Surface Science Society of Japan,2005,3:439. |
[6] | Yamamoto T;Watanabe K .Empirical-Potential Study of Phonon Transport in Graphitic Ribbons[J].Physical Review B,2004,70:245402. |
[7] | Qin W;Lin X;Bian W et al.Density Functional Theory Calculations and Molecular Dynamics Simulations of the Adsorption of Biomolecules on Graphene Surfaces[J].Biomaterials,2009,10:013. |
[8] | Wu Y;Yang B;Zong B et al.Carbon Nanowalls and Related Materials[J].Journal of Materials Chemistry,2004,14:469. |
[9] | Nakada K;Fujita M;Dresselhaus G et al.Edge State in Graphene Ribbons:Nanometer Size Effect and Edge Shape Dependence[J].Physical Review B,1996,17:954. |
[10] | Fujita M;Wakabayashi K;NakadaK et al.Peculiar Localized State at Zigzag Graphite Edge[J].Journal of the Physical Society of Japan,1996,65:1920. |
[11] | Huang Y C;Chang C P;Lin M E .Electric-Field Induced Modification of Electronic Properties of Few-Layer Graphene Nanoribbons[J].Journal of Applied Physics,2008,104:103714. |
[12] | Miyamoto Y.;Fujita M.;Nakada K. .First-principles study of edge states of H-terminated graphitic ribbons[J].Physical Review.B.Condensed Matter,1999(15):9858-9861. |
[13] | Yu, SS;Zheng, WT;Wen, QB;Jiang, Q .First principle calculations of the electronic properties of nitrogen-doped carbon nanoribbons with zigzag edges[J].Carbon,2008(3):537-543. |
[14] | Martins TB;Miwa RH;da Silva AJR;Fazzio A .Electronic and transport properties of boron-doped graphene nanoribbons[J].Physical review letters,2007(19):6803-1-6803-4-0. |
[15] | Yu, S. S.;Zheng, W. T.;Jiang, Q. .Electronic Properties of Nitrogen-/Boron-Doped Graphene Nanoribbons With Armchair Edges[J].IEEE transactions on nanotechnology,2010(1):78-81. |
[16] | C. P. Chang;Y. C. Huang;C. L. Lu .Electronic and optical properties of a nanographite ribbon in an electric field[J].Carbon: An International Journal Sponsored by the American Carbon Society,2006(3):508-515. |
[17] | Wu JY;Ho JH;Lai YH;Li TS;Lin MF .Electronic properties of 1D nanographite ribbons in modulated magnetic fields[J].Physics Letters, A,2007(4):333-338. |
[18] | Chen S C;Lin C Y;Lin M F .Electronic Properties of Nanographite Ribbons in a Spatially Modulated Electric Field[J].Diamond % Related Materials,2008,17:1545. |
[19] | Charlier J C;Michenaud J P;Gonze X et al.Tight-binding Model for Electronic Properties of Simple Hexagonal Graphite[J].Physical Review B,1991,44:13237. |
[20] | Son YW;Cohen ML;Louie SG .Energy gaps in graphene nanoribbons[J].Physical review letters,2006(21):6803-1-6803-4-0. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%