欢迎登录材料期刊网

材料期刊网

高级检索

对多晶体金属材料的晶界结构进行设计,能够显著提高这类材料的力学、化学及磁学性能.因此,晶界设计已成为金属材料改性的一项重要技术.对晶界设计的基本理论进行了介绍,在此基础上综述了近年来这项技术的应用研究概况,并提出了未来的进一步研究方向.

参考文献

[1] Watanabe T .An approach to grain boundary design of strong and ductile polycrystals[J].Research Mechanica,1984,11:47.
[2] Lin P;Palumbo G;Erb U et al.Influence of grain boundary character distribution on sensitization and intergranular corrosion of alloy 600[J].Scripta Metallurgica et Materialia,1995,33(09):1387.
[3] Randle V .Mechanism of twinning-induced grain boundary engineering in low stacking-fault energy materials[J].Acta Materialia,1999,47(15):4187.
[4] Randle V .Twinning-related grain boundary engineering[J].Acta Materialia,2004,52:4067.
[5] Randle V .The coincidence site lattice and the 'sigma enigma '[J].Materials Characterization,2001,47:411.
[6] G. Palumbo;K. T. Aust;E. M. Lehockey;U. Erb;P. Lin .On a more restrictive geometric criterion for "special" CSL grain boundaries[J].Scripta materialia,1998(11):1685-1690.
[7] Fortier P;Miller W A;Aust K T .Triple junction and grain boundary distributions in metallic materials[J].Acta Materialia,1997,45(08):3459.
[8] P. Lin;G. Palumbo;K. T. Aust .EXPERIMENTAL ASSESSMENT OF THE CONTRIBUTION OF ANNEALING TWINS TO CSL DISTRIBUTIONS, IN FCC MATERIALS[J].Scripta materialia,1997(10):1145-1149.
[9] Schuh C A;Kumar M;King W E .Analysis of grain boundary networks and their evolution during grain boundary engineering[J].Acta Materialia,2003,51:687.
[10] Watanabe T;Tsurekawa S .Toughening of brittle materials by grain boundary engineering[J].Materials Science and Engineering A,2004,A387-389:447.
[11] Shimada M;Kokawa H;Wang Z J et al.Optimization of grain boundary character distribution for intergranular corrosion resistant 304 stainless steel by twin-induced grain boundary engineering[J].Acta Materialia,2002,50:2331.
[12] Jorge-Badiola D;Iza-Mendia A;Gutierrez I .Study by EBSD of the development of the substructure in a hot deformed 304 stainless steel[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2005(1/2):445-454.
[13] Bi H Y;Kokawa H;Wang ZJ et al.Suppression of chromium depletion by grain structure change duringtwin-induced grain boundary engineering of 304 stainless steel[J].Scripta Materialia,2003,49:219.
[14] Bi H Y;Wang Z J;Shimada M et al.Electron microscopic observation of grain boundary in thermomechanical-processed SUS 304 stainless steel[J].Materials Letters,2003,57:2803.
[15] Spigarelli S.;Cabibbo M.;Evangelista E.;Palumbo G. .Analysis of the creep strength of a low-carbon AISI 304 steel with low-Sigma grain boundaries[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2003(1/2):93-99.
[16] Was G S;Alexandreanu B;Andresen P et al.Role of coincident site lattice boundaries in creep and stress corrsion cracking[J].Materials Research Society,2004,819(02)
[17] El Wahabi M;Gavard L;Cabrera JM;Prado JM;Montheillet F .EBSD study of purity effects during hot working in austenitic stainless steels[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2005(1/2):83-90.
[18] Cao SQ;Zhang JX;Wu JS;Wang L;Chen JG .Microtexture, grain boundary character distribution and secondary working embrittlement of high strength IF steels[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2005(1/2):203-208.
[19] Lee S L;Richards N L .The effect of single-step low strain and annealing of nickel on grain boundary character[J].Materials Science and Engineering A,2005,A390:81.
[20] Lee SL;Richards NL .Influence of long term annealing on grain boundary character distributions in nickel[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2005(1/2):74-85.
[21] Krupp U.;Kane WM.;Liu XY.;Dueber O.;Laird C.;McMahon CJ. .The effect of grain-boundary-engineering-type processing on oxygen-induced cracking of IN718[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2003(1/2):213-217.
[22] Qian M;Lippold J C .The effect of annealing twin-generated special grain boundaries on HAZ liquation cracking of nickel-base superalloys[J].Acta Materialia,2003,51:3351.
[23] Kim T;Hong K T;Lee K S .The relationship between the fracture toughness and grain boundary character distribution in polycrystalline NiAl[J].Intermetallics,2003,11:33.
[24] Alexandreanu B;Capell B;Was G S .Combined effect of special grain boundaries and grain boundary carbides on IGSCC of Ni-16Cr-9Fe-xC alloys[J].Materials Science and Engineering A,2001,A300:94.
[25] Alexandreanu B;Sencer B H;Thaveeprungsriporn V et al.The effect of grain boundary character distribution on the high temperature deformation behavior of Ni-16Cr-9Fe alloys[J].Acta Materialia,2003,51:3831.
[26] Lehockey E M;Brennenstuhl A M;Thompson I .On the relationship between grain boundary connectivity,coincident site lattice boundaries,and intergranular stress corrosion cracking[J].Corrosion Science,2004,46:2383.
[27] Yi Y S;Kim J S .Characterization methods of grain boundary and triple junction distributions[J].Scripta Materialia,2004,50:855.
[28] Saylor D M;Dasher B S El;Rollett A D et al.Distribution of grain boundaries in aluminum as a function of five macroscopic parameters[J].Acta Materialia,2004,52:3649.
[29] Xun Y;Tan M J .EBSD characterization of 8090 Al-Li alloy during dynamic and static recrystallization[J].Materials Characterization,2004,52:187.
[30] Zhai T;Jiang X P;Li J X et al.The grain boundary geometry for optimum resistance to growth of short fatigue cracks in high strength Al-alloys[J].International Journal of Fatigue,2005,27:1202.
[31] Hirata T;Tanabe S;Kohzu M et al.Grain boundary character distribution control to inhibit cavitation insuperplastic P/M7475[J].Scripta Materialia,2003,49:891.
[32] Fujita T;Horita Z;Langdon T G .Using grain boundary engineering to evaluate the diffusion characteristics in ultrafine-grained Al-Mg and Al-Zn alloys[J].Materials Science and Engineering A,2004,A371:241.
[33] Kim C S;Hu Y;Rohrer G S et al.Five-parameter grain boundary distribution in grain boundary engineered brass[J].Scripta Materialia,2005,52:633.
[34] Lee S Y;Chun Y B;Han J W et al.Effect of thermomechanical processing on grain boundary characteristics in twophase brass[J].Materials Science and Engineering A,2003,A363:307.
[35] Lee DS.;Ryoo HS.;Hwang SK. .A grain boundary engineering approach to promote special boundaries in Pb-base alloy[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2003(1/2):106-111.
[36] Kobayashi S;Tsurekawa S;Watanabe T .Grain boundary hardening and triple junction hardening in polycrystalline molybdenum[J].ACTA MATERIALIA,2005,53:1051.
[37] U. ERB .ELECTRODEPOSITED NANOCRYSTALS: SYNTHESIS, STRUCTURE, PROPERTIES AND FUTURE APPLICATIONS[J].Canadian Metallurgical Quarterly,1995(3):275-280.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%