欢迎登录材料期刊网

材料期刊网

高级检索

空间微重力环境下几乎无对流和沉降,可为晶体生长提供一个相对稳定和均一的理想环境,易于得到尺寸较大的高质量单晶.但是,空间结晶实验成功率低,费用昂贵,实验机会受限.因此,研发各种空间微重力环境地基模拟技术具有重要意义.目前可用于晶体生长的地基无容器悬浮技术主要有空气动力悬浮、静电悬浮、电磁悬浮、液体界面悬浮、超声悬浮和磁场悬浮技术等.这些地基模拟技术可实现晶体的无容器悬浮生长,避免器壁对晶体生长的不良影响,提高晶体质量,为解决X射线单晶衍射技术中的瓶颈问题提供新途径,还可为在地基进行结晶动力学和机理研究提供简单易行的方法.从技术原理、优势、缺陷及在结晶(特别是蛋白质结晶)中的应用4个方面对这些技术逐一进行了介绍和评述.重点介绍了液体界面悬浮、超声悬浮和磁场悬浮技术这3种用于蛋白质晶体生长的较为成熟的地基无容器悬浮技术.

参考文献

[1] Vergara A;Lorber B;Sauter C;Giege R;Zagari A .Lessons from crystals gown in the Advanced Protein Crystallisation Facility for conventional crystallisation applied to structural biology[J].Biophysical Chemistry: An International Journal Devoted to the Physical Chemistry of Biological Phenomena,2005(2/3):102-112.
[2] Lorber B .The crystallization of biological macromolecules under microgravity:A way to more accurate three-dimensional structures[J].Biochimica et Biophysica Acta (BBA)-Proteins Proteomics,2002,1599(1-2):1.
[3] Kundrot C E;Judge R A;Pusey M L et al.Microgravity and macromolecular crystallography[J].Crystal Growth and Design,2001,1(01):87.
[4] Vergara A;Lorber B;Zagari A;Giege R .Physical aspects of protein crystal growth investigated with the Advanced Protein Crystallization Facility in reduced-gravity environments.[J].Acta crystallographica.Section D. Biological crystallography,2003(Pt.1):2-15.
[5] Ng J D .Space-grown protein crystals are more useful for structure determination[J].Microgravity Transport Processes in Fluid Thermal Biological and Materials Sciences,2002,974:598.
[6] DeLucas LJ.;Moore KM.;Long MM.;Rouleau R.;Bray T.;Crysel W.;Weise L. .Protein crystal growth in space, past and future[J].Journal of Crystal Growth,2002(Pt.3):1646-1650.
[7] Snell EH;Helliwell JR .Macromolecular crystallization in microgravity[J].Reports on Progress in Physics,2005(4):799-853.
[8] 钟晓燕,陈佳圭.空间电磁悬浮技术的发展状况[J].物理,1996(09):565.
[9] Francis Millot;Jean Claude Rifflet;Guillaume Wille .Analysis of Surface Tension from Aerodynamic Levitation of Liquids[J].Journal of the American Ceramic Society,2002(1):187-192.
[10] Yasutomo Arai;Tomotsugu Aoyama;Shinichi Yoda .Spherical sapphire single-crystal synthesis by aerodynamic levitation with high growth rate[J].Review of Scientific Instruments,2004(7):2262-2265.
[11] Sakai, I;Murai, K;Jiang, L;Umesaki, N;Honma, T;Kitano, A .Aerodynamic levitation apparatus for structure study of high temperature materials coupled with Debye-Scherrer camera at BL19B2 of SPring-8[J].Journal of Electron Spectroscopy and Related Phenomena,2005(0):1011-1013.
[12] 熊瑞平,殷国富,陶继忠.气悬浮立式动平衡机中精密压力控制[J].液压与气动,2005(09):7-9.
[13] Rhim W K;Chung S K;Barber D et al.An electrostatic levitator for high-temperature containerless materials processing in 1-g[J].Review of Scientific Instruments,1993,64(10):2961.
[14] Aaron J. Rulison;John L. Watkins;Brian Zambrano .Electrostatic containerless processing system[J].Review of Scientific Instruments,1997(7):2856-2863.
[15] Jianding Yu;Naokiyo Koshikawa;Yasutomo Arai .Containerless solidification of oxide material using an electrostatic levitation furnace in microgravity[J].Journal of Crystal Growth,2001(4):568-576.
[16] 胡亮,鲁晓宇,侯智敏.静电悬浮技术研究进展[J].物理,2007(12):944-950.
[17] 杨晓光,鲁晓宇.静电悬浮条件下材料的研究进展[J].材料导报,2008(Z2):176-178.
[18] C. Notthoff;H. Franz;M. Hanfland;D. M. Herlach;D. Holland-Moritz;W. Petry .Electromagnetic levitation apparatus for investigations of the phase selection in undercooled melts by energy-dispersive X-ray diffraction[J].Review of Scientific Instruments,2000(10):3791-3796.
[19] 李桂荣,曹健峰,王宏明,夏小江,戴起勋,赵玉涛.电磁技术在金属材料科学与工程中的应用[J].材料导报,2006(08):58-61.
[20] 郭友军,王海鹏,解文军.电磁悬浮和声悬浮过程的动态摄影研究[J].西北工业大学学报,2008(05):655-658.
[21] 叶经纬,丁文耀,孙志斌,黄璜,赵清,翟光杰.空间电磁悬浮线圈参数与悬浮力[J].空间科学学报,2011(01):80-86.
[22] Hyers R W;Matson D M;Kehon K F et al.Convection in containerless processing[J].Annals of the New York Academy of Sciences,2004,1027:474.
[23] Chayen N E;Shaw Stewart P D;Blow D M .Microbatch crystallization under oil a new technique allowing many small-volume crystallization trials[J].Journal of Crystal Growth,1992,122(1-4):176.
[24] Chayen NE. .A NOVEL TECHNIQUE FOR CONTAINERLESS PROTEIN CRYSTALLIZATION[J].Protein Engineering,1996(10):927-929.
[25] Lorber B.;Giege R. .CONTAINERLESS PROTEIN CRYSTALLIZATION IN FLOATING DROPS - APPLICATION TO CRYSTAL GROWTH MONITORING UNDER REDUCED NUCLEATION CONDITIONS[J].Journal of Crystal Growth,1996(1/4):204-215.
[26] Chayen NE. .Crystallization with oils: a new dimension in macromolecular crystal growth[J].Journal of Crystal Growth,1999(2/4):434-441.
[27] Kinoshita T;Maruki R;Warizaya M et al.Structure of a high-resolution crystal form of human triosephosphate isomerase:Improvement of crystals using the gel-tube method[J].Acta Crystallographica Section F:Structural Biology & Crystallization Communications,2005,61:346.
[28] Satoshi Murakami .Femtosecond laser processing of protein crystals grown in agarose gel[J].Journal of Crystal Growth,2009(1):73.
[29] Otalora F;Gavira J A;Ng J D et al.Counterdiffusion methods applied to protein crystallization[J].Progr BiophysMolecular Biology,2009,101(1-3):26.
[30] Amano T.;Nakamura K.;Ueha S.;Hashimoto Y.;Koike Y. .A multi-transducer near field acoustic levitation system for noncontact transportation of large-sized planar objects[J].Japanese journal of applied physics,2000(5B):2982-2985.
[31] Chung SK.;Trinh EH. .Containerless protein crystal growth in rotating levitated drops[J].Journal of Crystal Growth,1998(3/4):384-397.
[32] Sadayuki U .Phenomena,theory and applications of nearfield acoustic levitation[J].Revista de Acustica,2002,33(3-4):21.
[33] Santesson S.;Cedergren-Zeppezauer ES.;Johansson T.;Laurell T.;Nilsson J.;Nilsson S. .Screening of nucleation conditions using levitated drops for protein crystallization[J].Analytical chemistry,2003(7):1733-1740.
[34] Xie WJ.;Cao CD.;Lu YJ.;Wei B. .Eutectic growth under acoustic levitation conditions - art. no. 061601[J].Physical review.E.Statistical physics, plasmas, fluids, and related interdisciplinary topics,2002(6 Pt.1):1601-0.
[35] 解文军,魏炳波.Space Environment Simulation for Material Processing by Acoustic Levitation[J].中国物理快报(英文版),2001(01):68-70.
[36] 崔卫芳,赵波.提高单轴式超声波悬浮能力的研究[J].机械科学与技术,2009(07):913-916.
[37] 解文军,曹崇德,魏炳波.TABLE OF CONTENTS and ABSTRACTS reprinted from ACTA PHYSICA SINICA, Vol.47, No.5(1998)(in Chinese)[J].ACTA PHYSICA SINICA,1999(02):150.
[38] 解文军,魏炳波.声悬浮研究新进展[J].物理,2002(09):551-554.
[39] 沈昌乐,解文军,洪振宇,魏炳波.声悬浮技术的发展及应用[J].现代物理知识,2010(03):10-13.
[40] Hirota N;Kurashige M;Iwasaka M;Ikehata M;Uetake H;Takayama T;Nakamura H;Ikezoe Y;Ueno S;Kitazawa K .Magneto-Archimedes separation and its application to the separation of biological materials[J].Physica, B. Condensed Matter,2004(0):267-271.
[41] Kitazawa K.;Uetake H.;Hirota N.;Ikezoe Y. .Magnetic field effects on water, air and powders[J].Physica, B. Condensed Matter,2001(0):709-714.
[42] Yin, DC;Geng, LQ;Lu, QQ;Lu, HM;Shang, P;Wakayama, NI .Multiple Orientation Responses of Lysozyme Crystals to Magnetic Field When Paramagnetic Salts Are Used As the Crystallization Agents[J].Crystal growth & design,2009(12):5083-5091.
[43] Yin DC;Lu HM;Geng LQ;Shi ZH;Luo HM;Li HS;Ye YJ;Guo WH;Shang P;Wakayama NI .Growing and dissolving protein crystals in a levitated and containerless droplet[J].Journal of Crystal Growth,2008(6):1206-1212.
[44] Hui-Meng Lu;Da-Chuan Yin;Hai-Sheng Li;Li-Qiang Geng;Chen-Yan Zhang;Qin-Qin Lu;Yun-Zhu Guo;Wei-Hong Guo;Peng Shang;Nobuko I. Wakayama .A containerless levitation setup for liquid processing in a superconducting magnet[J].Review of Scientific Instruments,2008(9):093903-1-093903-7-0.
[45] 韩王超,钟诚文,耿利强,卢慧甍,张卫菊,郭卫红,商澎,尹大川.利用超导磁体模拟失重环境[J].宇航学报,2007(05):1385-1388.
[46] 耿利强,尹大川,卢慧甍,韩王超,张卫菊,罗慧敏,商澎.强磁环境下的生物大分子结晶研究[J].材料导报,2007(06):28-34.
[47] Wakayama N I;Yin D C;Harata K et al.Macromolecular crystallization in microgravity generated by a superconducting magnet[J].Annals of New York Academic Science:Interdisciplinary Transport Phenomena in the Space Sciences,2006,1077:184.
[48] Wakayama N I;Yin D C;Tanimoto Y.Protein crystal growth in low gravity provided by a new type of superconducting magnet[J].Mater Proc Magn Fields,2005:285.
[49] Wakayarna N I;Yin D C;Qi J W .How does buoyancy-driven convection affect biological macromolecular crystallization. An analysis of microgravity and hypergravity effects by means of magnetic field gradients[J].FDMP,2005,1(02):153.
[50] Yin DC;Wakayama NI;Harata K;Fujiwara M;Kiyoshi T;Wada H;Niimura N;Arai S;Huang WD;Tanimoto Y .Formation of protein crystals (orthorhombic lysozyme) in quasi-microgravity environment obtained by superconducting magnet[J].Journal of Crystal Growth,2004(1/2):184-191.
[51] Yin DC;Inatomi Y;Wakayama NI;Huang WD;Kuribayashi K .An investigation of magnetic field effects on the dissolution of lysozyme crystal and related phenomena.[J].Acta crystallographica.Section D. Biological crystallography,2002(Pt.12):2024-2030.
[52] Lin S X;Zhou M;Azzi A et al.Magnet used for protein crystallization:Novel attempts to improve the crystal quality[J].Biochemical and Biophysical Research Communications,2000,275(02):274.
[53] Ramachandran N;Leslie FW .Using magnetic fields to control convection during protein crystallization-analysis and validation studies[J].Journal of Crystal Growth,2005(1/2):297-306.
[54] D.C. Yin;Y. Oda;N.I. Wakayama;M. Ataka .New morphology, symmetry, orientation and perfection of lysozyme crystals grown in a magnetic field when paramagnetic salts (NiCl_2, CoCl_2 and MnCl_2) are used as crystallizing agents[J].Journal of Crystal Growth,2003(4):618-625.
[55] Paul-Francois Paradis;Takehiko Ishikawa;Jianding Yu;Shinichi Yoda .Hybrid electrostatic-aerodynamic levitation furnace for the high-temperature processing of oxide materials on the ground[J].Review of Scientific Instruments,2001(6):2811-2815.
[56] Paul-Francois Paradis;Takehiko Ishikawa .Non-contact property measurements of liquid and supercooled ceramics with a hybrid electrostatic-aerodynamic levitation furnace[J].Measurement Science & Technology,2005(2):452-456.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%